CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 7 problems on this exam, totaling 120 points.

1. Language Representation (18 points)

Let the language L consist of all binary strings that do not contain 111 .
(a) [5 points] Write a regular expression that represents L.
(b) [5 points] Write a CFG that generates all strings in L.
(c) [5 points] Draw a DFA that accepts exactly the strings in L.
(d) [3 points] Convert the following regular expression to a CFG:
$10\left(0^{*} \cup 1^{*}\right) 01$

2. FSMs (20 points)

(a) [10 points] The following DFA accepts all binary strings that do not end in 0 .

The following DFA accepts all binary strings that contain at least two 1 s .

Draw a DFA that accepts all binary strings that do not end in 0 AND contain at least two 1s.
(b) [10 points] Convert the following NFA into a DFA.

3. Relations (17 points)

(a) [7 points] Let the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ be defined as $\{(x, y): 4 \mid(x+y)\}$. List 3 elements of R.
-
-
-
List the properties that R has out of the following: reflexive, transitive, symmetric, antisymmetric. If R has a property, simply say so without further explanation. If R does not have a property, provide a counterexample without explaining further.
(b) [10 points] Let R and S be symmetric relations on a set A. Prove that $R \backslash S$ is symmetric using an English proof.

4. Induction I (15 points)

Let the function $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:
$f(0)=2$
$f(1)=7$
$f(n)=f(n-1)+2 f(n-2)$ for $n \geq 2$
Prove that $f(n)=3 * 2^{n}+(-1)^{n+1}$ for all integers $n \geq 0$ using strong induction.

5. Induction II (15 points)

Let the set S be recursively defined as follows:
Basis: $(0,0) \in S$
Recursive Step: If $(x, y) \in S$, then $(x+2, y+4) \in S$ and $(x+4, y+8) \in S$.

Prove that for all $(x, y) \in S, x+y$ is divisible by 3 .

6. Sets (20 points)

(a) [12 points] Prove using the Meta Theorem that for any sets A and B,

$$
A \backslash \bar{B}=(A \cup \varnothing) \cap B
$$

Hint 1: The empty set, \varnothing, is the set that contains no elements. i.e. $\varnothing::=\{x: F\}$. Hint 2: If you get stuck, try working backwards!

Let $A=\{\{1\},\{1,2,3\}\}$ and $B=\{\{1,2\},\{2,3\},\{1,2,3\}\}$.
(b) [4 points] What is $A \cup B$?
(c) [4 points] What is $A \backslash B$?

7. Irregularity (15 points)

Prove that the language $L=\left\{10^{x} 10^{x+1} 1: x \geq 0\right\}$ is not regular.

