
CSE 390Z: Mathematics of Computing Workshop
Week 8 Workshop Solutions

0. Conceptual Review
(a) Regular expression rules:

Basis: ε, a for a ∈ Σ
Recursive: If A,B are regular expressions, (A ∪B), AB, and A∗ are regular expressions.

1. Structural Induction: Divisible by 4
Define a set B of numbers by:

• 4 and 12 are in B

• If x ∈ B and y ∈ B, then x+ y ∈ B and x− y ∈ B

Prove by induction that every number in B is divisible by 4.
Complete the proof below:

Solution:

Let P (b) be the claim that 4 | b. We will prove P (b) is true for all numbers b ∈ B by structural induction.
Base Case:

• 4 | 4 is trivially true, so P (4) holds.

• 12 = 3 · 4, so 4 | 12 and P (12) holds.

Inductive Hypothesis: Suppose P (x) and P (y) for some arbitrary x, y ∈ B.
Inductive Step:

Goal: Prove P (x+y) and P (x−y)

Per the IH, 4 | x and 4 | y. By the definition of divides, x = 4k and y = 4j for some integers k, j.

Case 1: Goal: Show P (x+ y)
x + y = 4k + 4j = 4(k + j). Since integers are closed under addition, k + j is an integer, so 4 | x + y and
P (x+ y) holds.

Case 2: Goal: Show P (x− y)
Similarly, x − y = 4k − 4j = 4(k − j) = 4(k + (−1 · j)). Since integers are closed under addition and multi-
plication, and −1 is an integer, we see that k − j must be an integer. Therefore, by the definition of divides,
4 | x− y and P (x− y) holds.

So, P (t) holds in both cases.
Conclusion: Therefore, P (b) holds for all numbers b ∈ B.

1

2. Structural Induction: CharTrees
Recursive Definition of CharTrees:

• Basis Step: Null is a CharTree

• Recursive Step: If L,R are CharTrees and c ∈ Σ, then CharTree(L, c,R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) = ε

preorder(CharTree(L, c,R)) = c · preorder(L) · preorder(R)

• The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) = ε

postorder(CharTree(L, c,R)) = postorder(L) · postorder(R) · c

• The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null

mirror(CharTree(L, c,R)) = CharTree(mirror(R), c,mirror(L))

• Finally, for all strings x, let the “reversal” of x (in symbols xR) produce the string in reverse order.

Additional Facts:
You may use the following facts:

• For any strings x1, ..., xk: (x1 · ... · xk)R = xRk · ... · xR1

• For any character c, cR = c

Statement to Prove:
Show that for every CharTree T , the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T . In notation, you should prove that for every CharTree, T : [preorder(T)]R =
postorder(mirror(T)).

There is an example and space to work on the next page.

2

Example for Intuition:

a

b

c d

Let Ti be the tree above.
preorder(Ti) =“abcd”.
Ti is built as (null, a, U)
Where U is (V, b,W),
V = (null, c, null),W = (null, d, null).

a

b

cd

This tree is mirror(Ti).
postorder(mirror(Ti)) =“dcba”,
“dcba” is the reversal of “abcd” so
[preorder(Ti)]

R = postorder(mirror(Ti)) holds for Ti

Solution:
Let P (T) be “[preorder(T)]R = postorder(mirror(T))”. We show P (T) holds for all CharTrees T by structural
induction.
Base case (T = Null): preorder(T)R = εR = ε = postorder(Null) = postorder(mirror(Null)), so P (Null)
holds.
Inductive hypothesis: Suppose P (L) ∧ P (R) for arbitrary CharTrees L,R.
Inductive step:
We want to show P (CharTree(L, c,R)),
i.e. [preorder(CharTree(L, c,R))]R = postorder(mirror(CharTree(L, c,R))).

Let c be an arbitrary element in Σ, and let T = CharTree(L, c,R)

preorder(T)R = [c · preorder(L) · preorder(R)]R defn of preorder
= preorder(R)R · preorder(L)R · cR Fact 1
= preorder(R)R · preorder(L)R · c Fact 2
= postorder(mirror(R)) · postorder(mirror(L)) · c by I.H.
= postorder(CharTree(mirror(R), c,mirror(L)) recursive defn of postorder
= postorder(mirror(CharTree(L, c,R))) recursive defn of mirror
= postorder(mirror(T)) defn of T

So P (CharTree(L, c,R)) holds.
By the principle of induction, P (T) holds for all CharTrees T .

3

3. Regular Expressions Warmup
Consider the following Regular Expression (RegEx):

1(45 ∪ 54)?1

List 5 strings accepted by the RegEx and 5 strings from T := {1, 4, 5}? rejected by the RegEx. Then, summarize
this RegEx in your own words.
Solution:

Accepted:

• 1451

• 1541

• 145541

• 1454545451

• 11

Rejected:

• 1

• 1441

• 45

• 14451

• 111

This RegEx accepts exactly those strings that start and end with a 1, and have zero or more pairs of 45 or 54
in the middle.

4. Context Free Grammars Warmup
Consider the following CFG which generates strings from the language V := {0, 1, 2, 3, 4}∗

S → 0X4

X → 1X3 | 2

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG
in your own words.
Solution:

Accepted:

• 024

• 01234

• 0112334

• 011123334

• 01111233334

Rejected:

• ε

• 2

• 0244

• 011234

• 10234

This CFG is all strings of the form 0 1m 2 3m 4, where m ≥ 0. That is, it’s all strings made of one 0, followed
by zero or more 1’s, followed by a 2, followed by the same number of 3’s as 1’s, followed by one 4.

4

5. Constructing RegExs and CFGs
For each of the following, construct a regular expression and CFG for the specified language.

(a) Strings from the language S := {a}∗ with an even number of a’s.

Solution:

(aa)∗

S → aaS|ε

(b) Strings from the language S := {a, b}∗ with an even number of a’s.

Solution:

b∗(b∗ab∗ab∗)∗

S → bS|aSaS|ε

(c) Strings from the language S := {a, b}∗ with odd length.

Solution:

(aa ∪ ab ∪ ba ∪ bb)∗(a ∪ b)

S → CS|a|b
C → aaC|abC|baC|bbC|ε

(d) (Challenge) Strings from the language S := {a, b}∗ with an even number of a’s or an odd number of b’s.

Solution:

b∗(b∗ab∗ab∗)∗ ∪ (a∗ ∪ a∗ba∗ba∗)∗b(a∗ ∪ a∗ba∗ba∗)∗

S → E|ObO
E → EE|aEa|b|ε
O → OO|bOb|a|ε

5

6. Structural Induction: CFGs
Consider the following CFG:

S → SS | 0S1 | 1S0 | ε

Prove that every string generated by this CFG has an equal number of 1’s and 0’s.

Hint 1: Start by converting this CFG to a recursively defined set.
Hint 2: You may wish to define the functions #0(x),#1(x) on a string x.

Solution:
First we observe that the language defined by this CFG can be represented by a recursively defined set. Define
a set S as follows:
Basis Rule: ε ∈ S
Recursive Rule: If x, y ∈ S, then 0x1, 1x0, xy ∈ S.

Now we perform structural induction on the recursively defined set. Define the functions #0(t),#1(t) to be the
number of 0’s and 1’s respectively in the string t.

Proof. For a string t, let P(t) be defined as "#0(t) = #1(t)". We will prove P(t) is true for all strings t ∈ S
by structural induction.
Base Case (t = ε): By definition, the empty string contains no characters, so #0(t) = 0 = #1(t)

Inductive Hypothesis: Suppose P(x) and P(y) hold for arbitrary strings x, y ∈ S.
Inductive Step:
Case 1: Goal: show P (0x1).
By the IH, #0(x) = #1(x). Then observe that:

#0(0x1) = #0(x) + 1 = #1(x) + 1 = #1(0x1)

Therefore #0(0x1) = #1(0x1). This proves P(0x1).

Case 2: Goal: show P (1x0)
By the IH, #0(x) = #1(x). Then observe that:

#0(1x0) = #0(x) + 1 = #1(x) + 1 = #1(1x0)

Therefore #0(1x0) = #1(1x0). This proves P(1x0).

Case 3: Goal: show P (xy)
By the IH, #0(x) = #1(x) and #0(y) = #1(y). Then observe that:

#0(xy) = #0(x) + #0(y) = #1(x) + #1(y) = #1(xy)

Therefore #0(xy) = #1(xy). This proves P(xy).
So by structural induction, P(t) is true for all strings t ∈ S.

Since the recursively defined set, S, is exactly the set of strings generated by the CFG, we have proved that the
statement is true for every string generated by the CFG too.

6

7. Bijections
Write a proof to show that both of these functions are a bijection from R to R.

(a) f(x) = 2x+ 1

Solution:
In order to prove bijectivity we must show that the function is both one-to-one and onto.

One-to-one: The function is one-to-one if ∀x∀y(f(x) = f(y) → x = y). Let x, y be arbitrary elements
of R such that f(x) = f(y). By the function definition we have 2x+ 1 = 2y + 1. Subtracting one from
both sides gives 2x = 2y and dividing by 2 results in x = y. Since x, y were arbitrary we have shown
that f is one-to-one.

Onto: The function is onto if ∀y∃x(f(x) = y). Let y be an arbitrary element of R. Consider the
expression x = y−1

2 , where x ∈ R. Solving for y gives us 2x + 1 = y. Thus, x is a value which gives
f(x) = y. Since y was arbitrary we have shown that f is onto.

Since f(x) is both one-to-one and onto, it is a bijection.

(b) f(x) = x3

Solution:
In order to prove bijectivity we must show that the function is both one-to-one and onto.

One-to-one: The function is one-to-one if ∀x∀y(f(x) = f(y) → x = y). Let x, y be arbitrary elements
of R such that f(x) = f(y). By the function definition we have x3 = y3. Taking the cube root of both
sides gives us x = y. Since x, y were arbitrary we have shown that f is one-to-one.

Onto: The function is onto if ∀y∃x(f(x) = y). Let y be an arbitrary element of the co-domain. Consider
the expression x = 3

√
y, where x ∈ R. Solving the equation for y gives us x3 = y. Thus, x is a value

which gives f(x) = y. Since y was arbitrary we have shown that f is onto.

Since f(x) is both one-to-one and onto, it is a bijection.

7

