CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop

Conceptual Review

(a) Set Definitions

Set Equality: $A = B := \forall x (x \in A \leftrightarrow x \in B)$ Subset: $A \subseteq B := \forall x (x \in A \to x \in B)$ Union: $A \cup B := \{x : x \in A \lor x \in B\}$ Intersection: $A \cap B := \{x : x \in A \land x \in B\}$ Set Difference: $A \setminus B = A - B := \{x : x \in A \land x \notin B\}$ Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$ Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$ Cartesian Product: $A \times B := \{(a,b) : a \in A, b \in B\}$

(b) How do we prove that for sets A and B, $A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.

(c) How do we prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

1. Modular Multiplication

Write an English proof to prove that for an integer m>0 and any integers a,b,c,d, if $a\equiv b\pmod m$ and $c\equiv d\pmod m$, then $ac\equiv bd\pmod m$.

Solution:

Let m>0, a,b,c,d be arbitrary integers. Assume that $a\equiv b\pmod m$ and $c\equiv d\pmod m$. Then by definition of mod, $m\mid (a-b)$ and $m\mid (c-d)$. Then by definition of divides, there exists some integer k such that a-b=mk, and there exists some integer j such that c-d=mj. Then a=b+mk and c=d+mj. So, multiplying, $ac=(b+mk)(d+mj)=bd+mkd+mjb+m^2jk=bd+m(kd+jb+mjk)$. Subtracting bd from both sides, ac-bd=m(kd+jb+mjk). By definition of divides, $m\mid ac-bd$. Then by definition of congruence, $ac\equiv bd\pmod m$.

2. Set Operations

Let $A = \{1, 2, 5, 6, 8\}$ and $B = \{2, 3, 5\}$.

(a) What is the set $A \cap (B \cup \{2, 8\})$?

Solution:

 $\{2, 5, 8\}$

(b) What is the set $\{10\} \cup (A \setminus B)$?

Solution:

 $\{1, 6, 8, 10\}$

(c) What is the set $\mathcal{P}(B)$?

Solution:

$$\{\{2,3,5\},\{2,3\},\{2,5\},\{3,5\},\{2\},\{3\},\{5\},\emptyset\}$$

(d) How many elements are in the set $A \times B$? List 3 of the elements.

Solution:

15 elements, for example (1, 2), (1, 3), (1, 5).

3. A Basic Subset Proof

Prove that $A \cap B \subseteq A \cup B$.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$.

4. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for any sets A, B.

Solution:

Let x be an arbitrary member of $A \cap (A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for any sets A, B.

Solution:

Let $y \in A$ be arbitrary. So certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$. Since $y \in A$ and $y \in A \cup B$, by definition of intersection, $y \in A \cap (A \cup B)$. Since y was arbitrary, $A \subseteq A \cap (A \cup B)$.

(c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for any sets A, B.

Solution:

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, we can deduce that $A \cap (A \cup B) = A$.

5. Subsets

Prove or disprove: for any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Solution:

Let A, B, C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Let x be an arbitrary element of A. Then, by definition of subset, $x \in B$, and by definition of subset again, $x \in C$. Since x was an arbitrary element of A, we see that all elements of A are in C, so by definition of subset, $A \subseteq C$. So, for any sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

6. $\cup \rightarrow \cap$?

Prove or disprove: for all sets A and B, $A \cup B \subseteq A \cap B$.

Solution:

We wish to disprove this claim via a counterexample. Choose $A=\{1\}$, $B=\varnothing$. Note that $A\cup B=\{1\}\cup\varnothing=\{1\}$ by definition of set union. Note that $A\cap B=\{1\}\cap\varnothing=\varnothing$ by definition of set intersection. $\{1\}\not\subseteq\varnothing$, so the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it is not the case that $A\cup B\not\subseteq A\cap B$ for all sets A and B.

7. Set Equality Proof

Write an English proof to show that $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution:

Let $x \in A \setminus (B \cap C)$ be arbitrary. Then by definition of set difference, $x \in A$ and $x \notin B \cap C$. Then by definition of intersection, $x \notin B$ or $x \notin C$. Thus (by distributive property of propositions) we have $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then by definition of set difference, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of union, $x \in (A \setminus B) \cup (A \setminus C)$. Since x was arbitrary, we have shown $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Let $x \in (A \setminus B) \cup (A \setminus C)$ be arbitrary. Then by definition of union, $x \in (A \setminus B)$ or $x \in (A \setminus C)$. Then by definition of set difference, $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then (by distributive property of propositions) $x \in A$, and $x \notin B$ or $x \notin C$. Then by definition of intersection, $x \in A$ and $x \notin (B \cap C)$. Then by definition of set difference, $x \in A \setminus (B \cap C)$. Since x was arbitrary, we have shown that $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$.

Since $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$ and $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$, we have shown $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

8. Induction: A Sneak Preview

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1 by induction.

Solution:

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n=2): $2^3 + (2+1)^3 + (2+2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2+1)^3 + (2+2)^3$, so P(2) holds.

Inductive Hypothesis: Assume that $9 \mid k^3 + (k+1)^3 + (k+2)^3$ for an arbitrary integer k > 1. Note that this is equivalent to assuming that $k^3 + (k+1)^3 + (k+2)^3 = 9j$ for some integer j by the definition of divides.

Inductive Step: Goal: Show
$$9 | (k+1)^3 + (k+2)^3 + (k+3)^3 |$$

$$\begin{array}{ll} (k+1)^3 + (k+2)^3 + (k+3)^3 &= (k^2+6k+9)(k+3) + (k+1)^3 + (k+2)^3 & \text{[expanding trinomial]} \\ &= (k^3+6k^2+9k+3k^2+18k+27) + (k+1)^3 + (k+2)^3 & \text{[expanding binomial]} \\ &= 9k^2+27k+27+k^3+(k+1)^3+(k+2)^3 & \text{[adding like terms]} \\ &= 9k^2+27k+27+9j & \text{[by I.H.]} \\ &= 9(k^2+3k+3+j) & \text{[factoring out 9]} \end{array}$$

Since k and j are integers, $k^2 + 3k + 3 + j$ is also an integer. Therefore, by the definition of divides, $9 \mid (k+1)^3 + (k+2)^3 + (k+3)^3$, so $P(k) \to P(k+1)$ for an arbitrary integer k > 1.

Conclusion: P(n) holds for all integers n > 1 by induction.