CSE 390Z: Mathematics for Computation Workshop
Week 5 Workshop

Conceptual Review
(a) Set Definitions

Set Equality: A= B :=Vz(x € A+ z € B)

Subset: AC B:=Vz(x € A=z € B)

Union: AUB:={z : € AVz € B}

Intersection: ANB:={z : x € ANz € B}

Set Difference: AA\B=A—-B:={x : x € ANz ¢ B}
Set Complement: A = AY :={x : z ¢ A}

Powerset: P(A) :={B : B C A}

Cartesian Product: A x B :={(a,b) :a € A, b€ B}

(b) How do we prove that for sets A and B, A C B?

Solution:

Let z € A be arbitrary... thus x € B. Since x was arbitrary, A C B.

(c) How do we prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that A C B and B C A.

1. Modular Multiplication

Write an English proof to prove that for an integer m > 0 and any integers a,b,c,d, if a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m).

Solution:

Let m > 0, a, b, ¢, d be arbitrary integers. Assume that a = b (mod m) and ¢ = d (mod m). Then by definition
of mod, m | (a —b) and m | (¢ — d). Then by definition of divides, there exists some integer k such that
a — b = mk, and there exists some integer j such that c —d = mj. Then a = b+ mk and ¢ = d +mj. So,
multiplying, ac = (b + mk)(d + mj) = bd + mkd + mzjb + m?jk = bd + m(kd + jb + mjk). Subtracting bd
from both sides, ac — bd = m(kd + jb + mjk). By definition of divides, m | ac — bd. Then by definition of
congruence, ac = bd (mod m).

2. Set Operations
Let A={1,2,5,6,8} and B = {2,3,5}.

(a) What is the set AN (BU{2,8})7?

Solution:
{2, 9, 8}

(b) What is the set {10} U (A \ B)?



Solution:
{1,6,8,10}

(c) What is the set P(B)?

Solution:
{{2,3,5},{2,3},{2,5}. {3,5}, {2}, {3}, {5}, 0}

(d) How many elements are in the set A x B? List 3 of the elements.

Solution:
15 elements, for example (1,2), (1, 3), (1,5).

3. A Basic Subset Proof
Prove that AN B C AU B.

Solution:

Let x € AN B be arbitrary. Then by definition of intersection, x € A and x € B. So certainly x € Aorz € B.
Then by definition of union, z € AU B.

4. Set Equality Proof
(a) Write an English proof to show that AN (AU B) C A for any sets A, B.

Solution:

Let = be an arbitrary member of AN (AU B). Then by definition of intersection, z € A and x € AU B.
So certainly, z € A. Since x was arbitrary, AN (AU B) C A.

(b) Write an English proof to show that A C AN (AU B) for any sets A, B.

Solution:

Let y € A be arbitrary. So certainly y € A or y € B. Then by definition of union, y € AUB. Sincey € A
and y € AU B, by definition of intersection, y € AN (AU B). Since y was arbitrary, A C AN (AU B).

(c) Combine part (a) and (b) to conclude that AN (AU B) = A for any sets A, B.

Solution:
Since AN(AUB) C Aand A C AN (AU B), we can deduce that AN (AU B) = A.

5. Subsets
Prove or disprove: for any sets A, B, and C, if AC B and B C C, then A C C.
Solution:

Let A, B, C be sets, and suppose A C B and B C C. Let x be an arbitrary element of A. Then, by definition
of subset, x € B, and by definition of subset again, x € C. Since x was an arbitrary element of A, we see that
all elements of A are in C, so by definition of subset, A C C. So, for any sets A, B, C,if AC B and B C C,
then A C C.



6. U—nN7?

Prove or disprove: for all sets A and B, AUB C ANB.

Solution:

We wish to disprove this claim via a counterexample. Choose A = {1}, B = @. Note that AUB = {1} U@ =
{1} by definition of set union. Note that AN B = {1} N @ = & by definition of set intersection. {1} Z &, so

the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it
is not the case that AU B € AN B for all sets A and B.

7. Set Equality Proof
Write an English proof to show that A\ (BNC) = (A\ B)U(A\C)

Solution:

Let x € A\ (B NC) be arbitrary. Then by definition of set difference, x € A and x ¢ BN C. Then by
definition of intersection, x ¢ B or x ¢ C. Thus (by distributive property of propositions) we have = € A and
x ¢ B,orxz € Aand x ¢ C. Then by definition of set difference, z € (A\ B) or x € (A\ C). Then by
definition of union, z € (A\ B)U(A\C). Since = was arbitrary, we have shown A\ (BNC) C (A\B)U(A\C).

Let x € (A\ B)U(A\ C) be arbitrary. Then by definition of union, z € (A\ B) or z € (A\ C). Then by defi-
nition of set difference, v € A and z ¢ B, or z € A and x ¢ C. Then (by distributive property of propositions)
x € A and x ¢ B orx ¢ C. Then by definition of intersection, x € A and x ¢ (BN C). Then by defini-
tion of set difference, x € A\ (BNC). Since x was arbitrary, we have shown that (A\ B)U(A\C) C A\ (BNC).

Since A\ (BNC)C (A\B)U(A\C)and (A\B)U(A\C) C A\ (BNC), we have shown A\ (BNC) =
(A\B)U (A\C).

8. Induction: A Sneak Preview

Prove that 9 | (n® + (n + 1)3 + (n + 2)3) for all n > 1 by induction.

Solution:

Let P(n) be “9 | n® + (n+ 1)3 4+ (n + 2)3". We will prove P(n) for all integers n > 1 by induction.

Base Case (n =2): 25+ (2+ 13+ (2+2)3=8+27+64=99=9-11,50 9| 23+ (2+1)3 + (2+2)3, s0
P(2) holds.

Inductive Hypothesis: Assume that 9 | k% + (k + 1)3 + (k + 2) for an arbitrary integer £ > 1. Note that
this is equivalent to assuming that k3 + (k + 1)3 + (k + 2)3 = 95 for some integer j by the definition of
divides.

Inductive Step: | Goal: Show 9 | (k +1)% + (k +2)% + (k + 3)3

(k+1P2+(k+2°+ (k+3)°= (k> +6k+9)(k+3)+ (k+1)°+ (k+2)° [expanding trinomial]
= (k% + 6k* + 9k + 3k* + 18k + 27) + (k + 1)® + (k +2)* [expanding binomial|
=9k2 4+ 2Tk + 27T+ K> + (k+1)3 4+ (k +2)3 [adding like terms]
= 9k + 27k + 27+ 95 [by 1.H.]
=9(k* + 3k + 3+ ) [factoring out 9]

Since k and j are integers, k% + 3k + 3 + j is also an integer. Therefore, by the definition of divides,
9| (k+1)3+ (k+2)%+ (k+3)3 so P(k) — P(k+ 1) for an arbitrary integer k& > 1.

Conclusion: P(n) holds for all integers n > 1 by induction.



