# Week 8 Workshop

# 0. Conceptual Review

(a) Regular expression rules: Basis:  $\epsilon$ , a for  $a \in \Sigma$ Recursive: If A, B are regular expressions,  $(A \cup B), AB$ , and  $A^*$  are regular expressions.

# 1. Structural Induction: Divisible by 4

Define a set  $\mathfrak{B}$  of numbers by:

- 4 and 12 are in  ${\mathfrak B}$
- If  $x \in \mathfrak{B}$  and  $y \in \mathfrak{B}$ , then  $x + y \in \mathfrak{B}$  and  $x y \in \mathfrak{B}$

Prove by induction that every number in  ${\mathfrak B}$  is divisible by 4. Complete the proof below:

## 2. Structural Induction: CharTrees

**Recursive Definition of CharTrees:** 

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTrees** and  $c \in \Sigma$ , then CharTree(L, c, R) is also a **CharTree**

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

### **Recursive functions on CharTrees:**

• The preorder function returns the preorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\tt preorder(Null)} & = \varepsilon \\ {\tt preorder(CharTree}(L,c,R)) & = c \cdot {\tt preorder}(L) \cdot {\tt preorder}(R) \end{array}$ 

The postorder function returns the postorder traversal of all elements in a CharTree.

 $\begin{array}{ll} \mathsf{postorder}(\mathtt{Null}) & = \varepsilon \\ \mathsf{postorder}(\mathtt{CharTree}(L,c,R)) & = \mathsf{postorder}(L) \cdot \mathsf{postorder}(R) \cdot c \end{array}$ 

• The mirror function produces the mirror image of a **CharTree**.

 $\begin{array}{ll} \mathsf{mirror}(\mathtt{Null}) & = \mathtt{Null} \\ \mathsf{mirror}(\mathtt{CharTree}(L,c,R)) & = \mathtt{CharTree}(\mathsf{mirror}(R),c,\mathsf{mirror}(L)) \\ \end{array}$ 

• Finally, for all strings x, let the "reversal" of x (in symbols  $x^R$ ) produce the string in reverse order.

### Additional Facts:

You may use the following facts:

- For any strings  $x_1, ..., x_k$ :  $(x_1 \cdot ... \cdot x_k)^R = x_k^R \cdot ... \cdot x_1^R$
- For any character c,  $c^R = c$

### **Statement to Prove:**

Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T:  $[preorder(T)]^R = postorder(mirror(T))$ .

There is an example and space to work on the next page.

## Example for Intuition:



Let  $T_i$  be the tree above. preorder $(T_i) =$  "abcd".  $T_i$  is built as (null, a, U)Where U is (V, b, W), V = (null, c, null), W = (null, d, null).



This tree is mirror $(T_i)$ . postorder(mirror $(T_i)$ ) ="dcba", "dcba" is the reversal of "abcd" so [preorder $(T_i)$ ]<sup>R</sup> = postorder(mirror $(T_i)$ ) holds for  $T_i$ 

# 3. Regular Expressions Warmup

Consider the following Regular Expression (RegEx):

 $1(45 \cup 54)^{\star}1$ 

List 5 strings accepted by the RegEx and 5 strings from  $T := \{1, 4, 5\}^*$  rejected by the RegEx. Then, summarize this RegEx in your own words.

## 4. Context Free Grammars Warmup

Consider the following CFG which generates strings from the language  $\mathsf{V}:=\{0,1,2,3,4\}^*$ 

$$\begin{array}{l} \mathbf{S} \to 0\mathbf{X}4 \\ \mathbf{X} \to 1\mathbf{X}3 \mid 2 \end{array}$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

# 5. Constructing RegExs and CFGs

For each of the following, construct a regular expression and CFG for the specified language.

(a) Strings from the language  $S := \{a\}^*$  with an even number of a's.

(b) Strings from the language  $S:=\{a,b\}^*$  with an even number of a 's.

(c) Strings from the language  $S := \{a, b\}^*$  with odd length.

(d) (Challenge) Strings from the language  $S := \{a, b\}^*$  with an even number of a's or an odd number of b's.

# 6. Structural Induction: CFGs

Consider the following CFG:

$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$$

Prove that every string generated by this CFG has an equal number of 1's and 0's.

Hint 1: Start by converting this CFG to a recursively defined set.

**Hint 2:** You may wish to define the functions  $\#_0(x), \#_1(x)$  on a string x.

# 7. Bijections

Write a proof to show that both of these functions are a bijection from  $\mathbb R$  to  $\mathbb R.$ 

(a) f(x) = 2x + 1

(b)  $f(x) = x^3$