Week 6 Workshop

0. Weak Induction Warmup

Prove by induction on n that for all integers $n \ge 4$, the inequality $n! > 2^n$ is true. Complete the induction proof below.

1. More Weak Induction

Prove that $2^n + 1 \leq 3^n$ for all positive integers n.

2. Induction with Divides

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1 by induction.

3. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and needs your help proving that it is correct.

```
public static boolean oddr(int n) {
    if (n == 0)
        return False;
    else
        return !oddr(n-1);
}
```

Help the student by writing an inductive proof to prove that for all integers $n \ge 0$, the method oddr returns True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions $Odd(n) := \exists x \in \mathbb{Z}(n = 2x + 1)$ and $Even(n) := \exists x \in \mathbb{Z}(n = 2x)$; !True = False and !False = True.

4. Strong Induction: Recursively Defined Functions

Consider the function f(n) defined for integers $n \ge 1$ as follows: f(1) = 1 for n = 1 f(2) = 4 for n = 2 f(3) = 9 for n = 3f(n) = f(n-1) - f(n-2) + f(n-3) + 2(2n-3) for $n \ge 4$

Prove by strong induction that for all $n \ge 1$, $f(n) = n^2$. Complete the induction proof below.

5. Strong Induction: A Variation of the Stamp Problem

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy". For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that P(n) is true for any $n \ge 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

6. Structural Induction: Divisible by 4

Define a set ${\mathfrak B}$ of numbers by:

- 4 and 12 are in ${\mathfrak B}$
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x + y \in \mathfrak{B}$ and $x y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4. Complete the proof below:

7. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then CharTree(L, c, R) is also a **CharTree**

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\tt preorder(Null)} & = \varepsilon \\ {\tt preorder(CharTree}(L,c,R)) & = c \cdot {\tt preorder}(L) \cdot {\tt preorder}(R) \end{array}$

• The postorder function returns the postorder traversal of all elements in a CharTree.

 $\begin{array}{ll} \mathsf{postorder}(\mathtt{Null}) & = \varepsilon \\ \mathsf{postorder}(\mathtt{CharTree}(L,c,R)) & = \mathsf{postorder}(L) \cdot \mathsf{postorder}(R) \cdot c \end{array}$

• The mirror function produces the mirror image of a **CharTree**.

 $\begin{array}{ll} \mathsf{mirror}(\mathtt{Null}) & = \mathtt{Null} \\ \mathsf{mirror}(\mathtt{CharTree}(L,c,R)) & = \mathtt{CharTree}(\mathsf{mirror}(R),c,\mathsf{mirror}(L)) \\ \end{array}$

• Finally, for all strings x, let the "reversal" of x (in symbols x^R) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_1, ..., x_k$: $(x_1 \cdot ... \cdot x_k)^R = x_k^R \cdot ... \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:

Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T: $[preorder(T)]^R = postorder(mirror(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_i be the tree above. $(T_i) =$ "abcd". T_i is built as (null, a, U)Where U is (V, b, W), V = (null, c, null), W = (null, d, null).

This tree is (T_i) . $((T_i)) =$ "dcba", "dcba" is the reversal of "abcd" so $[preorder(T_i)]^R = postorder(mirror(T_i))$ holds for T_i