CSE 390Z: Mathematics for Computation Workshop

Week 6 Workshop

0. Weak Induction Warmup
Prove by induction on n that for all integers n > 4, the inequality n! > 2" is true.
Complete the induction proof below.

1. More Weak Induction
Prove that 2" 4+ 1 < 3" for all positive integers n.



2. Induction with Divides
Prove that 9 | (n® + (n + 1)3 + (n +2)3) for all n > 1 by induction.

3. Inductively Odd

An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

public static boolean oddr(int n) {

if (n == 0)
return False;
else

return !oddr(n—1);

}

Help the student by writing an inductive proof to prove that for all integers n > 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := 3z € Z(n =2z + 1) and Even(n) := 3x € Z(n = 2x); !True = False and !False = True.



4. Strong Induction: Recursively Defined Functions
Consider the function f(n) defined for integers n > 1 as follows:
fl)y=1forn=1

f(2)=4forn=2

fB)=9forn=3

fm)=fn=1)—fn—2)+ f(n —3)+2(2n —3) forn > 4

Prove by strong induction that for all n > 1, f(n) = n?.
Complete the induction proof below.



5. Strong Induction: A Variation of the Stamp Problem
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".

For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n > 18. Use strong induction on 7 to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.

6. Structural Induction: Divisible by 4
Define a set B of numbers by:
= 4 and 12 are in B

s fzeBandyeB, thenx+yeBandax—yeB

Prove by induction that every number in ‘B is divisible by 4.
Complete the proof below:



7. Structural Induction: CharTrees
Recursive Definition of CharTrees:

» Basis Step: Null is a CharTree
= Recursive Step: If L, R are CharTrees and ¢ € ¥, then CharTree(L, ¢, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) =c
preorder(CharTree(L,c, R)) = c- preorder(L) - preorder(R)

The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) =¢
postorder(CharTree(L,c, R)) = postorder(L) - postorder(R) - ¢

The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null
mirror(CharTree(L,c, R)) = CharTree(mirror(R),c, mirror(L))

Finally, for all strings z, let the “reversal” of z (in symbols *) produce the string in reverse order.

Additional Facts:
You may use the following facts:

= For any strings z1, ..., 73 (21 - ... - 23)F = ka szl

R:

= For any character ¢, ¢ c

Statement to Prove:
Show that for every CharTree T, the reversal of the preorder traversal of T' is the same as the postorder
traversal of the mirror of 7. In notation, you should prove that for every CharTree, T: [preorder(T)]% =
postorder(mirror(T)).

There is an example and space to work on the next page.



Example for Intuition:

Let T; be the tree above.
(T;) ="abed”.

T; is built as (null,a,U)
Where U is (V,b, W),

V = (null, ¢,null), W = (null,d,null).

This tree is (T3).

((T3)) ="dcba”,

“dcba” is the reversal of “abcd” so

[preorder(T;)]* = postorder(mirror(T})) holds for T;



