Week 5 Workshop

Conceptual Review

(a) Set Definitions

Set Equality: $A = B := \forall x (x \in A \leftrightarrow x \in B)$ Subset: $A \subseteq B := \forall x (x \in A \rightarrow x \in B)$ Union: $A \cup B := \{x : x \in A \lor x \in B\}$ Intersection: $A \cap B := \{x : x \in A \land x \in B\}$ Set Difference: $A \setminus B = A - B := \{x : x \in A \land x \notin B\}$ Set Complement: $\overline{A} = A^C := \{x : x \notin A\}$ Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$ Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

- (b) How do we prove that for sets A and B, $A \subseteq B$?
- (c) How do we prove that for sets A and B, A = B?

1. Modular Multiplication

Write an English proof to prove that for an integer m > 0 and any integers a, b, c, d, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

2. Set Operations

- Let $A = \{1, 2, 5, 6, 8\}$ and $B = \{2, 3, 5\}$.
 - (a) What is the set $A \cap (B \cup \{2, 8\})$?
 - (b) What is the set $\{10\} \cup (A \setminus B)$?
 - (c) What is the set $\mathcal{P}(B)$?

(d) How many elements are in the set $A \times B$? List 3 of the elements.

3. A Basic Subset Proof

Prove that $A \cap B \subseteq A \cup B$.

4. Set Equality Proof

(a) Write an English proof to show that $A \cap (A \cup B) \subseteq A$ for any sets A, B.

(b) Write an English proof to show that $A \subseteq A \cap (A \cup B)$ for any sets A, B.

(c) Combine part (a) and (b) to conclude that $A \cap (A \cup B) = A$ for any sets A, B.

5. Subsets

Prove or disprove: for any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

6. $\cup \rightarrow \cap$?

Prove or disprove: for all sets A and B, $A \cup B \subseteq A \cap B$.

7. Set Equality Proof

Write an English proof to show that $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

8. Induction: A Sneak Preview

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1 by induction.