CSE 390Z: Mathematics for Computation Workshop

QuickCheck: Induction Solutions (due Monday, November 11)

Please submit a response to the following questions on Gradescope. We do not grade on accuracy, so please submit your best attempt. You may either typeset your responses or hand-write them. Note that hand-written solutions must be legible to be graded.

We have created **this template** if you choose to typeset with Latex. **This guide** has specific information about scanning and uploading pdf files to Gradescope.

0. Induction: Equality

For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = 1^2 + 2^2 + \dots + n^2.$$

Prove that for all $n \in \mathbb{N}$, $S_n = \frac{1}{6}n(n+1)(2n+1)$.

Solution:

Let P(n) be the statement " $S_n = \frac{1}{6}n(n+1)(2n+1)$ " defined for all $n \in \mathbb{N}$. We prove that P(n) is true for all $n \in \mathbb{N}$ by induction on n.

Base Case: When n=0, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0. Thus, $S_0=0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1)=0$, we know that P(0) is true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary $k \in \mathbb{N}$.

Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $S_{k+1}=\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$

Examining S_{k+1} , we see that

$$S_{k+1} = 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = S_k + (k+1)^2.$$

By the inductive hypothesis, we know that $S_k = \frac{1}{6}k(k+1)(2k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$S_{k+1} = S_k + (k+1)^2$$

$$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= (k+1)\left(\frac{1}{6}k(2k+1) + (k+1)\right)$$

$$= \frac{1}{6}(k+1)\left(k(2k+1) + 6(k+1)\right)$$

$$= \frac{1}{6}(k+1)\left(2k^2 + 7k + 6\right)$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

$$= \frac{1}{6}(k+1)((k+1) + 1)(2(k+1) + 1)$$

Thus, we can conclude that P(k+1) is true.

Conclusion: P(n) holds for all integers $n \geq 0$ by the principle of induction.

1. Video Solution

Watch this video on the solution after making an initial attempt. Then, answer the following questions.

(a) What is one thing you took away from the video solution?