CSE 390Z: Mathematics for Computation Workshop

QuickCheck: Set Theory Proof Solutions (due Monday, November 4th)

Please submit a response to the following questions on Gradescope. We do not grade on accuracy, so please submit your best attempt. You may either typeset your responses or hand-write them. Note that hand-written solutions must be legible to be graded.

We have created **this template** if you choose to typeset with Latex. **This guide** has specific information about scanning and uploading pdf files to Gradescope.

0. Set Proof: A Complement Makes all the Difference

Consider the following statement: For sets A, B:

$$A \cap \overline{(A \setminus B)} = A \cap B$$

.

Prove the statement using a set equality English proof.

Solution:

Let A and B be arbitrary sets. First we show $A\cap \overline{(A\setminus B)}\subseteq A\cap B$. Let x be an arbitrary element of $A\cap \overline{(A\setminus B)}$. By definition of \cap and complement, x is an element of A and is not an element of $A\setminus B$. By definition of set difference this means, $x\in A\land \neg(x\in A\land x\not\in B)$. By DeMorgan's law we have: $x\in A\land (x\not\in A\lor x\in B)$. Distributing we find, $(x\in A\land x\not\in A)\lor (x\in A\land x\in B)$. By definition of empty set, union, and intersection we find: $(x\in A\land x\not\in A)\lor (x\in A\land x\in B)=\varnothing\cup(A\cap B)=A\cap B$.

Therefore, since x was arbitrary we have found every element in $A \cap (\overline{A \setminus B})$ is in $A \cap B$, so it follows that $A \cap (\overline{A \setminus B}) \subseteq A \cap B$.

Now we show $A \cap B \subseteq A \cap \overline{(A \setminus B)}$. Let x be an arbitrary element of $A \cap B$. Then, by definition of intersection, we know $(x \in A \land x \in B)$. By identity, we can state $(x \in A \land x \in B) \lor (x \in A \land x \not\in A)$. By definition of distributivity we have, $x \in A \land (x \not\in A \lor x \in B)$. Then by DeMorgan's law we have $x \in A \land \neg (x \in A \land x \not\in B)$. Then by definition of intersection, complement, and set difference we have $A \cap \overline{(A \setminus B)}$. Therefore, since x was arbitrary we have found that every element in $A \cap B$ is in $A \cap \overline{(A \setminus B)}$, thus $A \cap B \subseteq A \cap \overline{(A \setminus B)}$.

Since we have shown subset equality in both directions, we have proven $A \cap \overline{(A \setminus B)} = A \cap B$.

1. Video Solution

Watch this video on the solution after making an initial attempt. Then, answer the following questions.

(a) What is one thing you took away from the video solution?