CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm Solutions

Name:			
UW ID:			

Instructions:

- This is a **simulated practice midterm**. You will **not** be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 60 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 80 points.

1. Predicate Translation [15 points]

Let the domain of discourse be novels, comic books, movies, and TV shows. Translate the following statements to predicate logic, using the following predicates:

Novel(x) := x is a novel Comic(x) := x is a comic book Movie(x) := x is a movie Show(x) := x is a TV show Adaptation(x, y) := x is an adaptation of y

(a) (5 points) A novel cannot be adapted into both a movie and a TV show.

Solution:

```
\forall x (\mathsf{Novel}(x) \to \forall m \forall s ((\mathsf{Movie}(m) \land \mathsf{Show}(s)) \to \neg (\mathsf{Adaptation}(m, x) \land \mathsf{Adaptation}(s, x)))
```

(b) (5 points) Every movie is an adaptation of a novel or a comic book.

Solution:

$$\forall m(\mathsf{Movie}(m) \to \exists x(\mathsf{Adaptation}(m, x) \land (\mathsf{Novel}(x) \lor \mathsf{Comic}(x))))$$

(c) (5 points) Every novel has been adapted into exactly one movie.

Solution:

$$\forall x (\mathsf{Novel}(x) \to \exists m (\mathsf{Movie}(m) \land \mathsf{Adaptation}(m, x) \land \forall n ((\mathsf{Movie}(n) \land (n \neq m)) \to \neg \mathsf{Adaptation}(n, x)))) \\ \mathsf{OR} \\ \forall x (\mathsf{Novel}(x) \to \exists m (\mathsf{Movie}(m) \land \mathsf{Adaptation}(m, x) \land \forall n (\mathsf{Adaptation}(n, x) \to (\neg \mathsf{Movie}(n) \lor n = m)))) \\ \mathsf{OR} \\ \forall x (\mathsf{Novel}(x) \to \exists m (\mathsf{Movie}(m) \land \mathsf{Adaptation}(m, x) \land \forall n ((\mathsf{Adaptation}(n, x) \land \mathsf{Movie}(n)) \to (n = m)))) \\$$

^{*}Note that a great exercise is to show that the above 3 solutions are all logically equivalent :)

2. Canonical Forms [15 points]

The boolean function f takes in three boolean inputs x_1, x_2, x_3 , and outputs $\neg((x_1 \oplus x_2) \land x_3)$.

Note: You may write your solutions using boolean algebra or propositional logic notation.

(a) (5 points) Draw a truth table for f.

Solution:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
Т	Т	Т	Т
T	T	F	Т
Т	F	Τ	F
Т	F	F	Т
F	Τ	Τ	F
F	Τ	F	T
F	F	Т	Т
F	F	F	Т

(b) (5 points) Write a propositional logic expression for f in DNF form (ORs of ANDs). Do not try to simplify.

Solution:

$$(x_1 \land x_2 \land x_3) \lor (x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land \neg x_2 \land \neg x_3)$$

(c) (5 points) Write a propositional logic expression for f in CNF form (ANDs of ORs). Do not try to simplify.

Solution:

$$(\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$$

3. Number Theory Proof [20 points]

Recall this definition of odd: $\mathrm{Odd}(x) := \exists y (x=2y+1)$. Write an English proof to show that for all odd integers k, the statement $8 \mid k^2-1$ holds.

Hint: At some point in your proof, you'll need to show that for any integer a, a(a+1) is even. When you reach this point, feel free to break your proof up into the case where a is even, and the case where a is odd.

Solution:

Let k be an arbitrary odd integer. Then k = 2a + 1 for some integer a. Then $k^2 - 1 = (2a + 1)^2 - 1 = 4a^2 + 4a + 1 - 1 = 4a^2 + 4a = 4a(a + 1)$.

Consider the case where a is odd. Then a=2b+1 for some integer b. Then $k^2-1=4a(a+1)=4(2b+1)(2b+2)=8(2b+1)(b+1)$. By closure of integers under multiplication and addition, $k^2-1=8c$ for an integer c. Thus in this case, $8\mid k^2-1$.

Consider the case where a is even. Then a=2b for some integer b. Then $k^2-1=4a(a+1)=4(2b)(2b+1)=8b(2b+1)$. By closure of integers under multiplication and addition, $k^2-1=8c$ for an integer c. Thus in this case, $8\mid k^2-1$.

So in all cases, $8 \mid k^2 - 1$. Since k was an arbitrary odd integer, we have proved the claim.

4. Sets [10 points]

Determine if the following claims are true or false. Then explain your reasoning in 1-3 sentences.

You may include images or examples in your explanation. You do not need to give a formal proof or disproof.

(a) (5 points) For all sets $A, B: (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.

Solution:

True. Both sets represent the set of elements that are in A or B but not in both. That is, both sets are equal to the set $\{x: x \in A \oplus x \in B\}$.

(b) (5 points) For all sets $A,B\colon \mathcal{P}(A)\times\mathcal{P}(B)\subseteq\mathcal{P}(A\times B).$

Solution:

False. Consider $A=\{1\}$ and $B=\{2\}$. Then $(\{1\},\{2\})\in\mathcal{P}(A)\times\mathcal{P}(B)$ but $(\{1\},\{2\})\not\in\mathcal{P}(A\times B)$.

5. Induction [20 points]

Prove by induction that $(1+\pi)^n > 1 + n\pi$ for all integers $n \ge 2$.

Solution:

- 1. Let P(n) be the statement " $(1+\pi)^n > 1 + n\pi$ ". We prove P(n) for all integers $n \ge 2$ by induction.
- 2. Base Case: When n=2, the LHS is $(1+\pi)^2=1+2\pi+\pi^2$. The RHS is $1+2\pi$. Since $\pi^2>0$, $1+2\pi+\pi^2>1+2\pi$, so the Base Case holds.
- 3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer $k \ge 2$. Then $(1+\pi)^k > 1+k\pi$.
- 4. Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $(1+\pi)^{k+1} > 1 + (k+1)\pi$

$$\begin{array}{ll} (1+\pi)^{k+1}=(1+\pi)(1+\pi)^k & \text{ Definition of Exponent} \\ > (1+\pi)(1+k\pi) & \text{ By IH} \\ = 1+\pi+k\pi+k\pi^2 & \text{ Algebra} \\ = 1+(k+1)\pi+k\pi^2 & \text{ Algebra} \\ > 1+(k+1)\pi & \text{ Since } k\pi^2>0 \end{array}$$

Thus
$$(1+\pi)^{k+1} > 1 + (k+1)\pi$$
. So $P(k+1)$ holds.

5. Thus we have proven P(n) for all integers $n \ge 2$ by induction.