
CSE 390Z: Mathematics for Computation Workshop
Mid-Quarter Review Solutions

Name:

0. Training Wheels
For this problem, our domain of discourse is college football teams and college football conferences.
You are allowed to use the 6= symbol to check that two objects are not equivalent.
We will use the following predicates:

• Team(x) := x is a football team.

• UW(x) := x is the University of Washington football team.

• WSU(x) := x is the Washington State University football team.

• OSU(x) := x is the Oregon State University football team.

• OldPac(x) := x is the old Pac-12 Conference.

• NewPac(x) := x is the new Pac-2 Conference.

• Member(x, y) := the football team x has been a part of the conference y.

• Lost(x, y) := x lost to y in a football game.

(a) State whether the two statements below are equivalent. Provide a one sentence justification.

∃y
[
OldPac(y) ∧ ∀x

(
Team(x) →

(
UW(x) → Member(x, y)

))]
∃y

[
OldPac(y) ∧ ∀x

(
UW(x) → Member(x, y)

)]
Solution:
Yes, they are equivalent. The UW Huskies are already a football team, so there is no need to actually
state Team(x).

(b) Translate the following sentence into predicate logic.
Excluding WSU, at least one team has been a part of the new Pac-2 conference and the old Pac-12
conference.

Solution:

∃x∃y∃z
[
Team(x) ∧ ¬WSU(x) ∧ OldPac(y) ∧ Member(x, y) ∧ NewPac(z) ∧ Member(x, z)

]
(c) Translate the following statement into predicate logic.

UW has won against all football teams besides itself, and WSU has lost to all foootball teams besides
itself.
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Solution:

∃x∃y
[

UW(x) ∧ ∀a
(
(Team(a) ∧ (a 6= x)) → Lost(a, x)

)
∧

WSU(y) ∧ ∀b
(
(Team(b) ∧ (b 6= y)) → Lost(y, b)

)]
(d) Negate the following statement. Your final answer should have zero negations.

Warning: this statement makes absolutely no sense. Do NOT spend time thinking about its meaning.
We want you to blindly follow your equivalency laws here.

∀x∀y
[(

WSU(x) ∧ OSU(y)
)
∧
(
¬Lost(x, y) ∨ ¬Lost(y, x)

)]
Solution:
Students only need to write the final answer to receive full credit.

∃x∃y
[(

WSU(x) ∧ OSU(y)
)
→

(
Lost(x, y) ∧ Lost(y, x)

)]
The corresponding chain of equivalences is provided below for reference.

¬∀x∀y
[(

WSU(x) ∧ OSU(y)
)
∧
(
¬Lost(x, y) ∨ ¬Lost(y, x)

)]
≡ ¬∀x∀y

[(
WSU(x) ∧ OSU(y)

)
∧ ¬

(
Lost(x, y) ∧ Lost(y, x)

)]
DeMorgans

≡ ∃x∃y¬
[(

WSU(x) ∧ OSU(y)
)
∧ ¬

(
Lost(x, y) ∧ Lost(y, x)

)]
DeMorgans for Quantifiers

≡ ∃x∃y
[
¬
(
WSU(x) ∧ OSU(y)

)
∨ ¬¬

(
Lost(x, y) ∧ Lost(y, x)

)]
DeMorgans

≡ ∃x∃y
[
¬
(
WSU(x) ∧ OSU(y)

)
∨
(
Lost(x, y) ∧ Lost(y, x)

)]
Double Negation

≡ ∃x∃y
[(

WSU(x) ∧ OSU(y)
)
→

(
Lost(x, y) ∧ Lost(y, x)

)]
Law of Implication
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1. Good Ol’ Proofs
(a) Prove for some predefined sets A,B,C that (A \B) ∪ (C \B) = (A ∪ C) \B.

Hint: You will need to use proof by cases.

Solution:
(⊆)
Let x ∈ (A \B)∪ (C \B) be arbitrary. We will do a proof by cases on whether x ∈ A \B or x ∈ C \B.
Case 1: Suppose x ∈ A \ B. By definition, x ∈ A and x /∈ B. Since x ∈ A, surely x ∈ A ∪ C. Since
x ∈ A ∪ C and x /∈ B, we have x ∈ (A ∪ C) \B.
Case 2: Suppose x ∈ C \ B. By definition, x ∈ C and x /∈ B. Since x ∈ C, surely x ∈ C ∪ A, or
equivalently x ∈ A ∪ C. Since x ∈ A ∪ C and x /∈ B, we have x ∈ (A ∪ C) \B.
Since x was an arbitrary, we have shown that (A \B) ∪ (C \B) ⊆ (A ∪ C) \B.

(⊇)
Let x ∈ (A ∪ C) \ B be arbitary. By definition, x ∈ A ∪ C and x /∈ B. We will do a proof by cases on
whether x ∈ A or x ∈ C.
Case 1: Suppose x ∈ A. Since x ∈ A and x /∈ B, we have x ∈ A \ B. Then, we can also say
x ∈ (A \B) ∪ (C \B).
Case 2: Suppose x ∈ C. Since x ∈ C and x /∈ B, we have x ∈ C \ B. Then, we can also say
x ∈ (C \B) ∪ (A \B), or equivalently x ∈ (A \B) ∪ (C \B).
Since x was an arbitrary, we have shown that (A ∪ C) \B ⊆ (A \B) ∪ (C \B).

Therefore, since we have proven that (A\B)∪(C \B) ⊆ (A∪C)\B and (A∪C)\B ⊆ (A\B)∪(C \B),
we have shown that (A \B) ∪ (C \B) = (A ∪ C) \B.

(b) Prove true or false: if a ≡ 1 (mod 5) and b ≡ 1 (mod 5), then gcd(a, b) ≡ 1 (mod 5).

Solution:
False. For example, when a = 6 and b = 21, their gcd is 3 and clearly 3 6≡ 1 (mod 5).
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(c) Consider the following statement: if a, b ∈ Z and a ≥ 2, then a - b or a - b+ 1.
Your goal is to disprove this statement using proof by contradiction.
Write out JUST THE FIRST SENTENCE of the proof.
Your answer should look something like "Suppose, for the sake of contradiction, ..."

Solution:
Suppose, for the sake of contradiction, that there exist a, b ∈ Z with a ≥ 2 where a | b and a | b+ 1.

2. Modular Arithmetic
Prove that for all integers x, y, n > 0, if x ≡6n 1 and y ≡7n 5 then 7x+ 2y ≡14n 17.

Hint: Apply the definition of congruence and divides.
Solution:
Let x, y, n > 0 be arbitrary integers. Suppose x ≡6n 1 and y ≡7n 5. Then by definition of congruence,
6n | (x − 1) and 7n | (y − 5). Then by definition of divides, there exists integers j, k such that x − 1 = 6nk
and y − 5 = 7nj. Thus x = 6nk + 1 and y = 7nj + 5. Then observe:

7x+ 2y = 7(6nk + 1) + 2(7nj + 5)

= 42nk + 7 + 14nj + 10

= 42nk + 14nj + 17

= 14n(3k + j) + 17

Then (7x+ 2y)− 17 = 14n(3k + j). Since k, j are integers, 3k + j is an integer. So by definition of divides,
14n | (7x+2y)−17. Then by definition of congruence, 7x+2y ≡14n 17. Since x, y, n were arbitrary, the claim
holds.

4



3. Induction
Prove by induction that 3n − 1 is divisible by 2 for any integer n ≥ 1.
Solution:
1. Let P(n) be the statement "3n − 1 is divisible by 2". We prove P(n) for all integers n ≥ 1 by induction.

2. Base Case: When n = 1, 3n − 1 = 31 − 1 = 3− 1 = 2. Since 2 | 2, the base case holds.

3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer k ≥ 1. Then 2 | 3k − 1. Then by
definition of divides, there exists some integer a such that 3k − 1 = 2a.

4. Inductive Step: Observe that...

3k+1 − 1 = 3(3k)− 1 Definition of Exponent
= 3(3k − 1 + 1)− 1 Subtract and Add by 1
= 3(2a+ 1)− 1 By IH
= 6a+ 3− 1 Algebra
= 6a+ 2 Algebra
= 2(3a+ 1) Algebra

Thus by definition of divides, 2 | 3k+1 − 1. So P(k + 1) holds.

5. Thus we have proven P(n) for all integers n ≥ 1 by induction.
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4. Strong Induction

Consider the function f , which takes a natural number as input and outputs a natural number.

f(n) =


1 if n = 0

2 if n = 1

f(n− 1) + 2 · f(n− 2) if n ≥ 2

Prove that f(n) = 2n for all n ∈ N.
Solution:
Let P (n) be the claim that f(n) = 2n. We will prove P (n) true for all n ∈ N by strong induction.

• f(0) = 1 = 1 = 20 so P (0) holds.

• f(1) = 2 = 2 = 21 so P (1) holds.

Suppose that for some arbitrary integer k ≥ 1, that P (j) holds for all j ∈ N such that j ≤ k.
Show P (k + 1), i.e. f(k + 1) = 2k+1

f(k + 1) = f(k + 1− 1) + 2 · f(k + 1− 2) Definition of f
= f(k) + 2 · f(k − 1)

= 2k + 2 · 2k−1 I.H. twice
= 2k + 2k−1+1

= 2k + 2k

= 2 · 2k

= 2k+1

Clearly, P (k + 1) holds.
Therefore, we have proven the claim true by strong induction.
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