CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be 110 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next one hour period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.

1. Predicate Translation [20 points]

Let the domain of discourse be people. Translate the following statements to predicate logic, using the following predicates:
$\operatorname{City}(x):=x$ is a city
Suburb $(x):=x$ is a suburb
$\operatorname{Town}(x):=x$ is a town
$\operatorname{Person}(x):=x$ is a person
Lives $\ln (x, y):=x$ lives in y
Worksln $(x, y):=x$ works in y
You may also use $=$ and \neq as predicates.
(a) (5 points) Alice lives in exactly one city.

Solution:

$\exists x(\operatorname{City}(x) \wedge$ Lives $\ln ($ Alice,$x) \wedge \forall y[(\operatorname{City}(y) \wedge$ Lives $\ln ($ Alice,$y)) \rightarrow(y=x)])$
OR
$\exists x(\operatorname{City}(x) \wedge$ Lives $\ln ($ Alice,$x) \wedge \forall y[(y \neq x) \rightarrow(\neg \operatorname{City}(y) \vee \neg$ Lives $\ln ($ Alice,$y))])$
(b) (5 points) Everyone who lives in a suburb works in a city.

Solution:

$\forall x([\operatorname{Person}(x) \wedge \exists y(\operatorname{Suburb}(y) \wedge \operatorname{Lives} \ln (x, y))] \rightarrow \exists z(\operatorname{City}(z) \wedge$ Works $\ln (x, z)))$
(c) (5 points) There's a town that no one lives in.

Solution:

$\exists x(\operatorname{Town}(x) \wedge \neg \exists y(\operatorname{Person}(y) \wedge$ Lives $\ln (y, x)))$
OR
$\exists x(\operatorname{Town}(x) \wedge \forall y(\operatorname{Person}(y) \rightarrow \neg \operatorname{Lives} \ln (y, x)))$
(d) (5 points) Every city is also a town, but not every town is a city.

Solution:

$\forall x(\operatorname{City}(x) \rightarrow \operatorname{Town}(x)) \wedge \exists x(\operatorname{Town}(x) \wedge \neg \operatorname{City}(x))$
OR
$\forall x(\operatorname{City}(x) \rightarrow \operatorname{Town}(x)) \wedge \neg \forall x(\operatorname{Town}(x) \rightarrow \operatorname{City}(x))$
2. All the Machines! [15 points]

Let the alphabet be $\Sigma=\{a, b\}$. Consider the language $L=\left\{w \in \Sigma^{*}\right.$: every a has a b two characters later $\}$. In other words, L is the language of all strings in the alphabet a, b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include $\varepsilon, a b b, a a b b, b b b b a b b$. Some strings not in L include $a, a b, a a b, a b a b b$. Notice that the last two characters of the string cannot be an a.
(a) (5 points) Give a regular expression that represents L.

Solution:

$$
(b \cup a b b \cup a a b b)^{*}
$$

(b) (5 points) Give a CFG that represents L.

Solution:

$\mathbf{S} \rightarrow b \mathbf{S}|a a b b \mathbf{S}| a b b \mathbf{S} \mid \varepsilon$
(c) (5 points) Give a DFA that represents L.

Solution:

3. Induction [20 points]

Consider the following recursive definition of a_{n} :

$$
\begin{array}{ll}
a_{1}=1 \\
a_{2} & =1 \\
a_{n} & =\frac{1}{2}\left(a_{n-1}+\frac{2}{a_{n-2}}\right)
\end{array} \quad \text { for } n>2
$$

Prove that $1 \leq a_{n} \leq 2$ for all integers $n \geq 1$.

Solution:

Define $\mathrm{P}(n)$ to be $1 \leq a_{n} \leq 2$. We prove $\mathrm{P}(n)$ holds for all integers $n \geq 1$ by strong induction.
Base Case $\mathrm{P}(1), \mathrm{P}(2)$ Observe that $a_{1}=a_{2}=1$, and $1 \leq 1 \leq 2$. So $\mathrm{P}(1)$ and $\mathrm{P}(2)$ hold.
Inductive Hypothesis: Suppose that $\mathrm{P}(j)$ is true for all $1 \leq j \leq k$ for some arbitrary integer $k \geq 2$. Inductive Step:

$$
\begin{array}{rlr}
a_{k+1} & =\frac{1}{2}\left(a_{k}+\frac{2}{a_{k-1}}\right) & \\
& \left.=\frac{a_{k}}{2}+\frac{1}{a_{k-1}}\right) & \\
& \leq \frac{2}{2}+\frac{1}{a_{k-1}} & \\
& \leq 1+\frac{1}{1} & \text { By IH } \\
& =2 & \text { By IH } \\
& & \\
a_{k+1} & =\frac{1}{2}\left(a_{k}+\frac{2}{a_{k-1}}\right) & \\
& \left.=\frac{a_{k}}{2}+\frac{1}{a_{k-1}}\right) & \\
& \geq \frac{1}{2}+\frac{1}{a_{k-1}} & \text { By IH } \\
& \geq \frac{1}{2}+\frac{1}{2} & \text { By IH } \\
& =1 &
\end{array}
$$

So $1 \leq a_{k+1} \leq 2$.
Conclusion: Thus we have proven $\mathrm{P}(n)$ for all integers $n \geq 1$ by strong induction.
4. Modular Arithmetic [10 points]
(a) Prove or disprove: If $a \equiv b(\bmod 10)$, then $a \equiv b(\bmod 5)$. [5 points]

Solution:

True. Suppose that $a \equiv b(\bmod 10)$. Then by definition of mod, $10 \mid(a-b)$. Then by definition of divides, there exists some integer k such that $a-b=10 k$ for some integer k. In particular, $a-b=5(2 k)$. Then $5 \mid(a-b)$. So $a \equiv b(\bmod 5)$.
(b) Prove or disprove: If $a \equiv b(\bmod 10)$, then $a \equiv b(\bmod 20)$. [5 points]

Solution:

False. For example, for $a=1$ and $b=11$. Then $a \equiv b(\bmod 10)$, but $a \not \equiv b(\bmod 20)$.

5. That's Illegal [20 points]

Prove that the set of strings $\left\{0^{n} 10^{n}: n \geq 0\right\}$ is not regular.

Solution:

$L=\left\{0^{n} 10^{n}: n \geq 0\right\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\left\{0^{n}: n \geq 0\right\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are 0^{i} and 0^{j} for some integers $i, j \geq 0$ such that $i \neq j$. Append the string 10^{i} to both of these strings. The two resulting strings are:
$a=0^{i} 10^{i}$ Note that $a \in L$.
$b=0^{j} 10^{i}$ Note that $b \notin L$, since $i \neq j$.
Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.

