CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name: ________________________________

UW ID: ______________________________

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be 110 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next one hour period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.
1. **Predicate Translation** [20 points]
Let the domain of discourse be people. Translate the following statements to predicate logic, using the following predicates:

- **City**(x) := x is a city
- **Suburb**(x) := x is a suburb
- **Town**(x) := x is a town
- **Person**(x) := x is a person
- **LivesIn**(x, y) := x lives in y
- **WorksIn**(x, y) := x works in y

You may also use $=$ and \neq as predicates.

(a) (5 points) Alice lives in exactly one city.

Solution:
\[
\exists x \left(\text{City}(x) \land \text{LivesIn}(\text{Alice}, x) \land \forall y \left[\left(\text{City}(y) \land \text{LivesIn}(\text{Alice}, y) \right) \rightarrow (y = x) \right] \right)
\]

OR
\[
\exists x \left(\text{City}(x) \land \text{LivesIn}(\text{Alice}, x) \land \forall y \left[(y \neq x) \rightarrow \left(\neg \text{City}(y) \lor \neg \text{LivesIn}(\text{Alice}, y) \right) \right] \right)
\]

(b) (5 points) Everyone who lives in a suburb works in a city.

Solution:
\[
\forall x \left(\left(\exists y \left(\text{Suburb}(y) \land \text{LivesIn}(x, y) \right) \right) \rightarrow \exists z \left(\text{City}(z) \land \text{WorksIn}(x, z) \right) \right)
\]

(c) (5 points) There’s a town that no one lives in.

Solution:
\[
\exists x \left(\text{Town}(x) \land \neg \exists y \left(\text{Person}(y) \land \text{LivesIn}(y, x) \right) \right)
\]

OR
\[
\exists x \left(\text{Town}(x) \land \forall y \left(\text{Person}(y) \rightarrow \neg \text{LivesIn}(y, x) \right) \right)
\]

(d) (5 points) Every city is also a town, but not every town is a city.

Solution:
\[
\forall x \left(\text{City}(x) \rightarrow \text{Town}(x) \right) \land \exists x \left(\text{Town}(x) \land \neg \text{City}(x) \right)
\]

OR
\[
\forall x \left(\text{City}(x) \rightarrow \text{Town}(x) \right) \land \neg \forall x \left(\text{Town}(x) \rightarrow \text{City}(x) \right)
\]
2. **All the Machines!** [15 points]

Let the alphabet be $\Sigma = \{a, b\}$. Consider the language $L = \{w \in \Sigma^* : \text{every } a \text{ has a } b \text{ two characters later}\}$.

In other words, L is the language of all strings in the alphabet a, b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include ε, abb, $aabb$, $babb$. Some strings not in L include a, ab, aab, $ababb$. Notice that the last two characters of the string cannot be an a.

(a) (5 points) Give a regular expression that represents L.

Solution:

$$(b \cup abb \cup aabb)^*$$

(b) (5 points) Give a CFG that represents L.

Solution:

$$S \rightarrow bS \mid aabbS \mid abbS \mid \varepsilon$$

(c) (5 points) Give a DFA that represents L.

Solution:

![DFA Diagram]
3. Induction [20 points]
Consider the following recursive definition of a_n:

$$
egin{align*}
 a_1 &= 1 \\
 a_2 &= 1 \\
 a_n &= \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-2}} \right) & \text{for } n > 2
\end{align*}
$$

Prove that $1 \leq a_n \leq 2$ for all integers $n \geq 1$.

Solution:
Define $P(n)$ to be $1 \leq a_n \leq 2$. We prove $P(n)$ holds for all integers $n \geq 1$ by strong induction.

Base Case $P(1), P(2)$ Observe that $a_1 = a_2 = 1$, and $1 \leq 1 \leq 2$. So $P(1)$ and $P(2)$ hold.

Inductive Hypothesis: Suppose that $P(j)$ is true for all $1 \leq j \leq k$ for some arbitrary integer $k \geq 2$.

Inductive Step:

$$
\begin{align*}
 a_{k+1} &= \frac{1}{2} \left(a_k + \frac{2}{a_{k-1}} \right) \\
 &= \frac{a_k}{2} + \frac{1}{a_{k-1}} \\
 \leq & \frac{2}{2} + \frac{1}{a_{k-1}} & \text{By IH} \\
 \leq & 1 + \frac{1}{1} & \text{By IH} \\
 = & 2 \\
\end{align*}
$$

$$
\begin{align*}
 a_{k+1} &= \frac{1}{2} \left(a_k + \frac{2}{a_{k-1}} \right) \\
 &= \frac{a_k}{2} + \frac{1}{a_{k-1}} \\
 \geq & \frac{1}{2} + \frac{1}{a_{k-1}} & \text{By IH} \\
 \geq & \frac{1}{2} + \frac{1}{2} & \text{By IH} \\
 = & 1 \\
\end{align*}
$$

So $1 \leq a_{k+1} \leq 2$.

Conclusion: Thus we have proven $P(n)$ for all integers $n \geq 1$ by strong induction.
4. Modular Arithmetic [10 points]
(a) Prove or disprove: If $a \equiv b \pmod{10}$, then $a \equiv b \pmod{5}$. [5 points]

Solution:
True. Suppose that $a \equiv b \pmod{10}$. Then by definition of mod, $10 \mid (a - b)$. Then by definition of divides, there exists some integer k such that $a - b = 10k$ for some integer k. In particular, $a - b = 5(2k)$. Then $5 \mid (a - b)$. So $a \equiv b \pmod{5}$.

(b) Prove or disprove: If $a \equiv b \pmod{10}$, then $a \equiv b \pmod{20}$. [5 points]

Solution:
False. For example, for $a = 1$ and $b = 11$. Then $a \equiv b \pmod{10}$, but $a \not\equiv b \pmod{20}$.
5. That's Illegal [20 points]
Prove that the set of strings \(\{0^n10^n : n \geq 0\} \) is not regular.

Solution:
\(L = \{0^n10^n : n \geq 0\} \). Let \(D \) be an arbitrary DFA, and suppose for contradiction that \(D \) accepts \(L \). Consider \(S = \{0^n : n \geq 0\} \). Since \(S \) contains infinitely many strings and \(D \) has a finite number of states, two strings in \(S \) must end up in the same state. Say these strings are \(0^i \) and \(0^j \) for some integers \(i, j \geq 0 \) such that \(i \neq j \). Append the string \(10^i \) to both of these strings. The two resulting strings are:

\[
\begin{align*}
a &= 0^i10^i & \text{Note that } a \in L. \\
b &= 0^j10^i & \text{Note that } b \notin L, \text{ since } i \neq j.
\end{align*}
\]

Since \(a \) and \(b \) end up in the same state, but \(a \in L \) and \(b \notin L \), that state must be both an accept and reject state, which is a contradiction. Since \(D \) was arbitrary, there is no DFA that recognizes \(L \), so \(L \) is not regular.