CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name:			
UW ID: _			

Instructions:

- This is a **simulated practice final**. You will **not** be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be 110 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next one hour period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.

1. Predicate Translation [20 points]

Let the domain of discourse be people. Translate the following statements to predicate logic, using the following predicates:

City(x) := x is a city Suburb(x) := x is a suburb Town(x) := x is a town Person(x) := x is a person LivesIn(x, y) := x lives in yWorksIn(x, y) := x works in y

You may also use = and \neq as predicates.

(a) (5 points) Alice lives in exactly one city.

Solution:

$$\exists x \Big(\mathsf{City}(x) \land \mathsf{LivesIn}(\mathsf{Alice}, x) \land \forall y \big[\big(\mathsf{City}(y) \land \mathsf{LivesIn}(\mathsf{Alice}, y) \big) \to (y = x) \big] \Big)$$
 OR
$$\exists x \Big(\mathsf{City}(x) \land \mathsf{LivesIn}(\mathsf{Alice}, x) \land \forall y \big[(y \neq x) \to \big(\neg \mathsf{City}(y) \lor \neg \mathsf{LivesIn}(\mathsf{Alice}, y) \big) \big] \Big)$$

(b) (5 points) Everyone who lives in a suburb works in a city.

Solution:

$$\forall x (\lceil \mathsf{Person}(x) \land \exists y (\mathsf{Suburb}(y) \land \mathsf{LivesIn}(x,y)) \rceil \rightarrow \exists z (\mathsf{City}(z) \land \mathsf{WorksIn}(x,z)))$$

(c) (5 points) There's a town that no one lives in.

Solution:

$$\exists x (\mathsf{Town}(x) \land \neg \exists y (\mathsf{Person}(y) \land \mathsf{LivesIn}(y, x)))$$
 OR
$$\exists x (\mathsf{Town}(x) \land \forall y (\mathsf{Person}(y) \rightarrow \neg \mathsf{LivesIn}(y, x)))$$

(d) (5 points) Every city is also a town, but not every town is a city.

Solution:

$$\forall x (\mathsf{City}(x) \to \mathsf{Town}(x)) \land \exists x (\mathsf{Town}(x) \land \neg \mathsf{City}(x))$$
 OR
$$\forall x (\mathsf{City}(x) \to \mathsf{Town}(x)) \land \neg \forall x (\mathsf{Town}(x) \to \mathsf{City}(x))$$

2. All the Machines! [15 points]

Let the alphabet be $\Sigma=\{a,b\}$. Consider the language $L=\{w\in\Sigma^*: \text{ every }a\text{ has a }b\text{ two characters later}\}$. In other words, L is the language of all strings in the alphabet a,b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include ε , abb, aabb, bbbbabb. Some strings not in L include a, ab, aab, ababb. Notice that the last two characters of the string cannot be an a.

(a) (5 points) Give a regular expression that represents L.

Solution:

 $(b \cup abb \cup aabb)^*$

(b) (5 points) Give a CFG that represents L.

Solution:

 $S \rightarrow bS \mid aabbS \mid abbS \mid \varepsilon$

(c) (5 points) Give a DFA that represents L.

Solution:

3. Induction [20 points]

Consider the following recursive definition of a_n :

$$a_1 = 1$$
 $a_2 = 1$
$$a_n = \frac{1}{2}(a_{n-1} + \frac{2}{a_{n-2}})$$
 for $n > 2$

Prove that $1 \le a_n \le 2$ for all integers $n \ge 1$.

Solution:

Define P(n) to be $1 \le a_n \le 2$. We prove P(n) holds for all integers $n \ge 1$ by strong induction.

Base Case P(1), P(2) Observe that $a_1=a_2=1$, and $1\leq 1\leq 2$. So P(1) and P(2) hold. Inductive Hypothesis: Suppose that P(j) is true for all $1\leq j\leq k$ for some arbitrary integer $k\geq 2$. Inductive Step:

$$\begin{split} a_{k+1} &= \frac{1}{2}(a_k + \frac{2}{a_{k-1}}) \\ &= \frac{a_k}{2} + \frac{1}{a_{k-1}}) \\ &\leq \frac{2}{2} + \frac{1}{a_{k-1}} \\ &\leq 1 + \frac{1}{1} \\ &= 2 \end{split} \qquad \text{By IH}$$

$$\begin{aligned} a_{k+1} &= \frac{1}{2}(a_k + \frac{2}{a_{k-1}}) \\ &= \frac{a_k}{2} + \frac{1}{a_{k-1}}) \\ &\geq \frac{1}{2} + \frac{1}{a_{k-1}} \\ &\geq \frac{1}{2} + \frac{1}{2} \end{aligned} \qquad \text{By IH} \\ &= 1 \end{aligned}$$

So $1 \le a_{k+1} \le 2$.

Conclusion: Thus we have proven P(n) for all integers $n \ge 1$ by strong induction.

4. Modular Arithmetic [10 point	4.	Modular	Arithmetic	110	points
---------------------------------	----	---------	------------	-----	--------

(a) Prove or disprove: If $a \equiv b \pmod{10}$, then $a \equiv b \pmod{5}$. [5 points]

Solution:

True. Suppose that $a\equiv b\pmod{10}$. Then by definition of mod, $10\mid (a-b)$. Then by definition of divides, there exists some integer k such that a-b=10k for some integer k. In particular, a-b=5(2k). Then $5\mid (a-b)$. So $a\equiv b\pmod{5}$.

(b) Prove or disprove: If $a \equiv b \pmod{10}$, then $a \equiv b \pmod{20}$. [5 points]

Solution:

False. For example, for a=1 and b=11. Then $a\equiv b\pmod{10}$, but $a\not\equiv b\pmod{20}$.

5. That's Illegal [20 points]

Prove that the set of strings $\{0^n10^n: n \ge 0\}$ is not regular.

Solution:

 $L=\{0^n10^n:n\geq 0\}.$ Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\{0^n:n\geq 0\}.$ Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are 0^i and 0^j for some integers $i,j\geq 0$ such that $i\neq j.$ Append the string 10^i to both of these strings. The two resulting strings are:

 $a=0^i10^i$ Note that $a\in L$.

 $b = 0^j 10^i$ Note that $b \notin L$, since $i \neq j$.

Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.