CSE 390Z: Mathematics of Computing

Week 9 Workshop Solutions

Conceptual Review

Relations definitions: Let R be a relation on A. In other words, $R \subseteq A \times A$. Then:

- R is reflexive iff for all $a \in A$, $(a, a) \in R$.
- R is symmetric iff for all a, b, if $(a, b) \in R$, then $(b, a) \in R$.
- R is antisymmetric iff for all a, b, if $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.
- R is transitive iff for all a, b, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

1. Context Free Grammars

Consider the following CFG which generates strings from the language V := $\{0, 1, 2, 3, 4\}^*$

$$\mathbf{S} \to 0\mathbf{X}4$$

 $\mathbf{X} \to 1\mathbf{X}3 \mid 2$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Rejected:

Solution:

Accepted:

-	-
• 024	• <i>€</i>
• 01234	• 2
• 0112334	• 0244
 011123334 	 011234
 011112333334 	 10234

This CFG is all strings of the form $0 \ 1^m \ 2 \ 3^m \ 4$, where $m \ge 0$. That is, it's all strings made of one 0, followed by zero or more 1's, followed by a 2, followed by the same number of 3's as 1's, followed by one 4.

2. Constructing CFGs

For each of the following, construct a CFG for the specified language.

(a) Strings from the language $S := \{a\}^*$ with an even number of a's.

Solution:

 $\mathbf{S} \to aa\mathbf{S}|\varepsilon$

(b) Strings from the language $S := \{a, b\}^*$ with odd length.

Solution:

$$S \to CS|a|b$$
$$C \to aaC|abC|baC|bbC|\varepsilon$$

(c) Strings from the language $S := \{a, b\}^*$ with an even number of a's or an odd number of b's.

Solution:

(d) Strings from the language $S := \{a, b\}^*$ with an equal number of a's and b's.

Solution:

$$S \rightarrow aSbS|bSaS|\varepsilon$$

3. Relations Examples

(a) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b + 1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.

Solution:

In R: (0,0), (1,0), (-1,0)Not in R: (2,0), (3,0), (17,5)

(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

Solution:

- Reflexive: Yes. For any integer a, it is true that $a \leq a + 1$. So $(a, a) \in R$.
- Symmetric: No. For example, $(0, 20) \in R$ but $(20, 0) \notin R$.
- Antisymmetric: No. For example $(0,1) \in R$ and $(1,0) \in R$.
- Transitive: No. For example $(2,1) \in R$ and $(1,0) \in R$, but $(2,0) \notin R$.

4. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.

(a) Prove or disprove: If R and S are transitive, $R\cup S$ is transitive.

Solution:

False. Let $R = \{(1,2)\}$, $S = \{(2,1)\}$. By definition, R and S are transitive. By definition of union, $R \cup S = \{(1,2), (2,1)\}$. However, if $R \cup S$ was transitive, we would require (1,1) to be in $R \cup S$, because (1,2) and (2,1) is in $R \cup S$. However, this is not the case. Therefore the claim is false.

(b) Prove or disprove: If R is symmetric, \overline{R} (the complement of R) is symmetric.

Solution:

True. Since R is symmetric, we know the following.

$$\forall a \forall b \ [(a,b) \in R \to (b,a) \in R]$$

Taking the contrapositive, this is equivalent to:

 $\forall a \forall b \ [(b,a) \notin R \to (a,b) \notin R]$

By the definition of complement, this is equivalent to:

$$\forall a \forall b \ [(b,a) \in \overline{R} \to (a,b) \in \overline{R}]$$

This is the definition of \overline{R} being symmetric.