CSE 390Z: Mathematics of Computing

Week 8 Workshop Solutions

0. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are **CharTrees** and $c \in \Sigma$, then CharTree(L, c, R) is also a **CharTree**

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\tt preorder(Null)} & = \varepsilon \\ {\tt preorder(CharTree}(L,c,R)) & = c \cdot {\tt preorder}(L) \cdot {\tt preorder}(R) \end{array}$

• The postorder function returns the postorder traversal of all elements in a CharTree.

 $\begin{array}{ll} {\sf postorder}({\tt Null}) & = \varepsilon \\ {\sf postorder}({\tt CharTree}(L,c,R)) & = {\sf postorder}(L) \cdot {\sf postorder}(R) \cdot c \end{array}$

• The mirror function produces the mirror image of a CharTree.

 $\begin{array}{ll} \mathsf{mirror}(\mathtt{Null}) & = \mathtt{Null} \\ \mathsf{mirror}(\mathtt{CharTree}(L,c,R)) & = \mathtt{CharTree}(\mathsf{mirror}(R),c,\mathsf{mirror}(L)) \end{array}$

• Finally, for all strings x, let the "reversal" of x (in symbols x^R) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_1, ..., x_k$: $(x_1 \cdot ... \cdot x_k)^R = x_k^R \cdot ... \cdot x_1^R$
- For any character c, $c^R = c$

Statement to Prove:

Show that for every **CharTree** T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every **CharTree**, T: $[preorder(T)]^R = postorder(mirror(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_i be the tree above. preorder $(T_i) =$ "abcd". T_i is built as (null, a, U) Where U is (V, b, W), V = (null, c, null), W = (null, d, null).

This tree is mirror (T_i) . postorder(mirror (T_i)) ="dcba", "dcba" is the reversal of "abcd" so [preorder (T_i)]^R = postorder(mirror (T_i)) holds for T_i

Solution:

Let P(T) be " $[preorder(T)]^R = postorder(mirror(T))$ ". We show P(T) holds for all **CharTrees** T by structural induction.

Base case (T = Null): preorder(T)^R = $\varepsilon^{R} = \varepsilon$ = postorder(Null) = postorder(mirror(Null)), so P(Null) holds.

Inductive hypothesis: Suppose $P(L) \wedge P(R)$ for arbitrary CharTrees L, R. Inductive step: We want to show P(CharTree(L, c, R)), i.e. $[\text{preorder}(\text{CharTree}(L, c, R))]^R = \text{postorder}(\text{mirror}(\text{CharTree}(L, c, R)))$. Let c be an arbitrary element in Σ , and let T = CharTree(L, c, R)

$\operatorname{preorder}(T)^R = [c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)]^R$	defn of preorder
$= \operatorname{preorder}(R)^R \cdot \operatorname{preorder}(L)^R \cdot c^R$	Fact 1
$= \operatorname{preorder}(R)^R \cdot \operatorname{preorder}(L)^R \cdot c$	Fact 2
$= postorder(mirror(R)) \cdot postorder(mirror(L)) \cdot c$	by I.H.
= postorder(CharTree(mirror(R), c, mirror(L))	recursive defn of postorder
= postorder(mirror(CharTree(L, c, R)))	recursive defn of mirror
= postorder(mirror(T))	defn of T

So P(CharTree(L, c, R)) holds.

By the principle of induction, P(T) holds for all **CharTrees** T.

1. Structural Induction: Strings

Recursive Definition of a String:

- Basis Step:
 e is a string
- Recursive Step: If w is a string and a is a character, w a is a string (the string w with the character a appended on to the end)

Recursive functions on String:

Length:

 $len(\epsilon) = 0$ $len(w \bullet a) = 1 + len(w)$ $rev(\epsilon) = \epsilon$ $rev(w \bullet a) = a \bullet rev(w)$

Reverse:

Statement to Prove:

Prove that for any string x, len(rev(x)) = len(x).

Solution:

For a string x, let P(x) be "len(rev(x)) = len(x)". We prove P(x) for all strings x by structural induction on the set of strings.

Base Case $(x = \epsilon)$: By definition of reverse, $len(rev(\epsilon)) = len(\epsilon)$. So $P(\epsilon)$ holds.

Inductive Hypothesis: Suppose P(w) holds for some arbitrary string w. Then len(rev(w)) = len(w).

Inductive Step: Goal: Show that $P(w \bullet a)$ holds for any character a.

Let a be an arbitrary character.

$$len(rev(w \bullet a)) = len(a \bullet rev(w))$$
[By Definition of reverse]
= 1 + len(rev(w)) [By Definition of length]
= 1 + len(w) [By IH]
= len(w • a) [By Definition of length]

This proves $\mathsf{P}(w \bullet a)$.

Conclusion: P(x) holds for all strings x by structural induction.

2. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

 $\begin{aligned} \mathsf{AllKeys}([]) &= [] & \mathsf{len}([]) &= 0\\ \mathsf{AllKeys}((a \to b) :: \mathsf{D}) &= a :: \mathsf{AllKeys}(\mathsf{D}) & \mathsf{len}((a \to b) :: \mathsf{D}) &= 1 + \mathsf{len}(\mathsf{D}) \end{aligned}$

Recursive functions on Sets:

```
len([]) = 0len(a :: C) = 1 + len(C)
```

Statement to prove:

Prove that len(D) = len(AllKeys(D)).

Solution:

Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to show P(D) for all dictionaries D. Base Case: $D = \lceil \rceil$: Note that:

$$len(D) = len([])$$

= len(AllKeys([])) [Definition of AllKeys]
= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C. **Inductive Step:**

Let $D' = (a \rightarrow b) :: C$. Note that:

$$\begin{split} \mathsf{len}((a \to b) :: \mathsf{C}) &= 1 + \mathsf{len}(\mathsf{C}) & [\mathsf{Definition of Len}] \\ &= 1 + \mathsf{len}(\mathsf{AllKeys}(\mathsf{C})) & [\mathsf{IH}] \\ &= \mathsf{len}(a :: \mathsf{AllKeys}(\mathsf{C})) & [\mathsf{Definition of Len}] \\ &= \mathsf{len}(\mathsf{AllKeys}((a \to b) :: \mathsf{C})) & [\mathsf{Definition of AllKeys}] \end{split}$$

So P(D') holds.

Conclusion: Thus, the claim holds for all dictionaries D by structural induction.

3. Structural Induction: CFGs

Consider the following CFG:

 $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$

Prove that every string generated by this CFG has an equal number of 1's and 0's.

Hint: You may wish to define the functions $\#_0(x), \#_1(x)$ on a string x.

Solution:

First we observe that the language defined by this CFG can be represented by a recursively defined set. Define a set S as follows: Basis Rule: $\epsilon \in S$

Recursive Rule: If $x, y \in S$, then $0x1, 1x0, xy \in S$.

Now we perform structural induction on the recursively defined set. Define the functions $\#_0(t), \#_1(t)$ to be the number of 0's and 1's respectively in the string t.

Proof. For a string t, let P(t) be defined as " $\#_0(t) = \#_1(t)$ ". We will prove P(t) is true for all strings $t \in S$ by structural induction.

Base Case $(t = \epsilon)$: By definition, the empty string contains no characters, so $\#_0(t) = 0 = \#_1(t)$

Inductive Hypothesis: Suppose P(x), P(y) hold for some arbitrary strings x, y.

Inductive Step:

Case 1: Goal is to show P(0x1) holds. By the IH, $\#_0(x) = \#_1(x)$. Then observe that:

$$\#_0(0x1) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(0x1)$$

Therefore $\#_0(0x1) = \#_1(0x1)$. This proves $\mathsf{P}(0x1)$.

Case 2: Goal is to show P(1x0) holds. By the IH, $\#_0(x) = \#_1(x)$. Then observe that:

$$\#_0(1x0) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(1x0)$$

Therefore $\#_0(1x0) = \#_1(1x0)$. This proves P(1x0).

Case 3: Goal is to show P(xy) holds. By the IH, $\#_0(x) = \#_1(x)$ and $\#_0(y) = \#_1(y)$. Then observe that:

$$\#_0(xy) = \#_0(x) + \#_0(y) = \#_1(x) + \#_1(y) = \#_1(xy)$$

Therefore $\#_0(xy) = \#_1(xy)$. This proves $\mathsf{P}(xy)$.

So by structural induction, P(t) is true for all strings $t \in S$.

4. Regular Expressions

(a) Consider the following Regular Expression (RegEx):

 $1(45 \cup 54)^*1$

List 5 strings accepted by the RegEx and 5 strings from $T := \{1, 4, 5\}^*$ rejected by the RegEx. Then, summarize this RegEx in your own words.

Solution:

Accepted:	Rejected:
 1451 	• 1
 1541 	 1441
 145541 	■ 45
1454545451	14451
• 11	 111

This RegEx accepts exactly those strings that start and end with a 1, and have one or more pairs of 45 or 54 in the middle.

(b) Consider the following Regular Expression (RegEx):

 $0^{\star}(0 \cup 1)^{\star}((01) \cup (11) \cup (10) \cup (00))1^{\star}(0 \cup 1)^{\star}$

List 3 strings accepted by the RegEx and 3 strings from $S := \{0,1\}^*$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

Solution:

Accepted:	Rejected:
• 01	• <i>\epsilon</i>
• 10	• 0
• 10100100101	• 1

This RegEx accepts all binary strings that are 2 or more characters long. A simpler RegEx for this is $(0 \cup 1)(0 \cup 1)(0 \cup 1)^*$.

5. Constructing Regular Expressions

For each of the following, construct a regular expression for the specified language.

(a) Strings from the language $S := \{a\}^*$ with an even number of a's.

Solution:

 $(aa)^*$

(b) Strings from the language $S := \{a, b\}^*$ with an even number of a's.

Solution:

 $b^*(b^*ab^*ab^*)^*$

(c) Strings from the language $S := \{a, b\}^*$ with odd length.

Solution:

 $(aa \cup ab \cup ba \cup bb)^*(a \cup b)$

(d) (Challenge) Strings from the language $S := \{a, b\}^*$ with an even number of a's or an odd number of b's.

Solution:

 $b^{*}(b^{*}ab^{*}ab^{*})^{*} \cup (a^{*} \cup a^{*}ba^{*}ba^{*})^{*}b(a^{*} \cup a^{*}ba^{*}ba^{*})^{*}$