
CSE 390Z: Mathematics of Computing
Week 8 Workshop Solutions

0. Structural Induction: CharTrees
Recursive Definition of CharTrees:

• Basis Step: Null is a CharTree

• Recursive Step: If L,R are CharTrees and c ∈ Σ, then CharTree(L, c,R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

• The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) = ε

preorder(CharTree(L, c,R)) = c · preorder(L) · preorder(R)

• The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) = ε

postorder(CharTree(L, c,R)) = postorder(L) · postorder(R) · c

• The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null

mirror(CharTree(L, c,R)) = CharTree(mirror(R), c,mirror(L))

• Finally, for all strings x, let the “reversal” of x (in symbols xR) produce the string in reverse order.

Additional Facts:
You may use the following facts:

• For any strings x1, ..., xk: (x1 · ... · xk)R = xRk · ... · xR1

• For any character c, cR = c

Statement to Prove:
Show that for every CharTree T , the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of T . In notation, you should prove that for every CharTree, T : [preorder(T)]R =
postorder(mirror(T)).

There is an example and space to work on the next page.

1

Example for Intuition:

a

b

c d

Let Ti be the tree above.
preorder(Ti) =“abcd”.
Ti is built as (null, a, U)
Where U is (V, b,W),
V = (null, c, null),W = (null, d, null).

a

b

cd

This tree is mirror(Ti).
postorder(mirror(Ti)) =“dcba”,
“dcba” is the reversal of “abcd” so
[preorder(Ti)]

R = postorder(mirror(Ti)) holds for Ti

Solution:
Let P (T) be “[preorder(T)]R = postorder(mirror(T))”. We show P (T) holds for all CharTrees T by structural
induction.
Base case (T = Null): preorder(T)R = εR = ε = postorder(Null) = postorder(mirror(Null)), so P (Null)
holds.
Inductive hypothesis: Suppose P (L) ∧ P (R) for arbitrary CharTrees L,R.
Inductive step: We want to show P (CharTree(L, c,R)),
i.e. [preorder(CharTree(L, c,R))]R = postorder(mirror(CharTree(L, c,R))).
Let c be an arbitrary element in Σ, and let T = CharTree(L, c,R)

preorder(T)R = [c · preorder(L) · preorder(R)]R defn of preorder
= preorder(R)R · preorder(L)R · cR Fact 1
= preorder(R)R · preorder(L)R · c Fact 2
= postorder(mirror(R)) · postorder(mirror(L)) · c by I.H.
= postorder(CharTree(mirror(R), c,mirror(L)) recursive defn of postorder
= postorder(mirror(CharTree(L, c,R))) recursive defn of mirror
= postorder(mirror(T)) defn of T

So P (CharTree(L, c,R)) holds.
By the principle of induction, P (T) holds for all CharTrees T .

2

1. Structural Induction: Strings
Recursive Definition of a String:

• Basis Step: ε is a string

• Recursive Step: If w is a string and a is a character, w • a is a string
(the string w with the character a appended on to the end)

Recursive functions on String:
Length:

len(ε) = 0

len(w • a) = 1 + len(w)

Reverse:
rev(ε) = ε

rev(w • a) = a • rev(w)

Statement to Prove:
Prove that for any string x, len(rev(x)) = len(x).

Solution:
For a string x, let P(x) be "len(rev(x)) = len(x)". We prove P(x) for all strings x by structural induction on
the set of strings.

Base Case (x = ε): By definition of reverse, len(rev(ε)) = len(ε). So P(ε) holds.

Inductive Hypothesis: Suppose P(w) holds for some arbitrary string w. Then len(rev(w)) = len(w).

Inductive Step: Goal: Show that P(w • a) holds for any character a.

Let a be an arbitrary character.

len(rev(w • a)) = len(a • rev(w)) [By Definition of reverse]
= 1 + len(rev(w)) [By Definition of length]
= 1 + len(w) [By IH]
= len(w • a) [By Definition of length]

This proves P(w • a).

Conclusion: P(x) holds for all strings x by structural induction.

3

2. Structural Induction: Dictionaries
Recursive definition of a Dictionary (i.e. a Map):

• Basis Case: [] is the empty dictionary

• Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a
dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

AllKeys([]) = [] len([]) = 0

AllKeys((a → b) :: D) = a :: AllKeys(D) len((a → b) :: D) = 1 + len(D)

Recursive functions on Sets:

len([]) = 0

len(a :: C) = 1 + len(C)

Statement to prove:
Prove that len(D) = len(AllKeys(D)).

Solution:
Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to
show P(D) for all dictionaries D.
Base Case: D = []: Note that:

len(D) = len([])

= len(AllKeys([])) [Definition of AllKeys]
= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C.
Inductive Step:
Let D’ = (a → b) :: C. Note that:

len((a → b) :: C) = 1 + len(C) [Definition of Len]
= 1 + len(AllKeys(C)) [IH]
= len(a :: AllKeys(C)) [Definition of Len]
= len(AllKeys((a → b) :: C)) [Definition of AllKeys]

So P(D’) holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction.

4

3. Structural Induction: CFGs
Consider the following CFG:

S → SS | 0S1 | 1S0 | ε

Prove that every string generated by this CFG has an equal number of 1’s and 0’s.

Hint: You may wish to define the functions #0(x),#1(x) on a string x.

Solution:
First we observe that the language defined by this CFG can be represented by a recursively defined set. Define
a set S as follows:
Basis Rule: ε ∈ S
Recursive Rule: If x, y ∈ S, then 0x1, 1x0, xy ∈ S.

Now we perform structural induction on the recursively defined set. Define the functions #0(t),#1(t) to be the
number of 0’s and 1’s respectively in the string t.

Proof. For a string t, let P(t) be defined as "#0(t) = #1(t)". We will prove P(t) is true for all strings t ∈ S
by structural induction.

Base Case (t = ε): By definition, the empty string contains no characters, so #0(t) = 0 = #1(t)

Inductive Hypothesis: Suppose P(x), P(y) hold for some arbitrary strings x, y.

Inductive Step:
Case 1: Goal is to show P(0x1) holds.
By the IH, #0(x) = #1(x). Then observe that:

#0(0x1) = #0(x) + 1 = #1(x) + 1 = #1(0x1)

Therefore #0(0x1) = #1(0x1). This proves P(0x1).

Case 2: Goal is to show P(1x0) holds.
By the IH, #0(x) = #1(x). Then observe that:

#0(1x0) = #0(x) + 1 = #1(x) + 1 = #1(1x0)

Therefore #0(1x0) = #1(1x0). This proves P(1x0).

Case 3: Goal is to show P(xy) holds.
By the IH, #0(x) = #1(x) and #0(y) = #1(y). Then observe that:

#0(xy) = #0(x) + #0(y) = #1(x) + #1(y) = #1(xy)

Therefore #0(xy) = #1(xy). This proves P(xy).

So by structural induction, P(t) is true for all strings t ∈ S.

5

4. Regular Expressions
(a) Consider the following Regular Expression (RegEx):

1(45 ∪ 54)?1

List 5 strings accepted by the RegEx and 5 strings from T := {1, 4, 5}? rejected by the RegEx. Then,
summarize this RegEx in your own words.

Solution:

Accepted:

• 1451
• 1541
• 145541
• 1454545451
• 11

Rejected:

• 1
• 1441
• 45
• 14451
• 111

This RegEx accepts exactly those strings that start and end with a 1, and have one or more pairs of 45
or 54 in the middle.

(b) Consider the following Regular Expression (RegEx):

0?(0 ∪ 1)?((01) ∪ (11) ∪ (10) ∪ (00))1?(0 ∪ 1)?

List 3 strings accepted by the RegEx and 3 strings from S := {0, 1}? rejected by the RegEx. Then,
summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of
strings.

Solution:

Accepted:

• 01
• 10
• 10100100101

Rejected:

• ε

• 0
• 1

This RegEx accepts all binary strings that are 2 or more characters long. A simpler RegEx for this is
(0 ∪ 1)(0 ∪ 1)(0 ∪ 1)?.

6

5. Constructing Regular Expressions
For each of the following, construct a regular expression for the specified language.

(a) Strings from the language S := {a}∗ with an even number of a’s.

Solution:
(aa)∗

(b) Strings from the language S := {a, b}∗ with an even number of a’s.

Solution:
b∗(b∗ab∗ab∗)∗

(c) Strings from the language S := {a, b}∗ with odd length.

Solution:
(aa ∪ ab ∪ ba ∪ bb)∗(a ∪ b)

(d) (Challenge) Strings from the language S := {a, b}∗ with an even number of a’s or an odd number of b’s.

Solution:
b∗(b∗ab∗ab∗)∗ ∪ (a∗ ∪ a∗ba∗ba∗)∗b(a∗ ∪ a∗ba∗ba∗)∗

7

