Week 8 Workshop Solutions

0. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then $\operatorname{CharTree}(L, c, R)$ is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\operatorname{preorder}(\operatorname{Null}) & =\varepsilon \\
\operatorname{preorder}(\operatorname{CharTree}(L, c, R)) & =c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)
\end{array}
$$

- The postorder function returns the postorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\text { postorder }(\operatorname{Null}) & =\varepsilon \\
\operatorname{postorder}(\operatorname{CharTree}(L, c, R)) & =\operatorname{postorder}(L) \cdot \operatorname{postorder}(R) \cdot c
\end{array}
$$

- The mirror function produces the mirror image of a CharTree.

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Null}) & =\operatorname{Null} \\
\operatorname{mirror}(\operatorname{CharTree}(L, c, R)) & =\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L))
\end{array}
$$

- Finally, for all strings x, let the "reversal" of x (in symbols x^{R}) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_{1}, \ldots, x_{k}:\left(x_{1} \cdot \ldots \cdot x_{k}\right)^{R}=x_{k}^{R} \cdot \ldots \cdot x_{1}^{R}$
- For any character $c, c^{R}=c$

Statement to Prove:

Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T : $[\operatorname{preorder}(T)]^{R}=$ postorder $(\operatorname{mirror}(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_{i} be the tree above.
$\operatorname{preorder}\left(T_{i}\right)=$ "abcd".
T_{i} is built as (null, a, U)
Where U is (V, b, W),
$V=(n u l l, c, n u l l), W=(n u l l, d, n u l l)$.

This tree is mirror $\left(T_{i}\right)$. postorder $\left(\operatorname{mirror}\left(T_{i}\right)\right)=$ "dcba", "dcba" is the reversal of "abcd" so $\left[\operatorname{preorder}\left(T_{i}\right)\right]^{R}=\operatorname{postorder}\left(\operatorname{mirror}\left(T_{i}\right)\right)$ holds for T_{i}

Solution:

 induction.
Base case $(T=\operatorname{Null}): \operatorname{preorder}(T)^{R}=\varepsilon^{R}=\varepsilon=\operatorname{postorder}(\mathrm{Null})=\operatorname{postorder}(\operatorname{mirror}(\mathrm{Null}))$, so $P(\mathrm{Null})$ holds.
Inductive hypothesis: Suppose $P(L) \wedge P(R)$ for arbitrary CharTrees L, R.
Inductive step: We want to show $P($ CharTree $(L, c, R))$,
i.e. $[\operatorname{preorder}(\operatorname{CharTree}(L, c, R))]^{R}=\operatorname{postorder}(\operatorname{mirror}(\operatorname{CharTree}(L, c, R)))$.

Let c be an arbitrary element in Σ, and let $T=\operatorname{CharTree}(L, c, R)$

$$
\begin{array}{rlr}
\operatorname{preorder}(T)^{R} & =[c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)]^{R} & \text { defn of preorder } \\
& =\operatorname{preorder}(R)^{R} \cdot \operatorname{preorder}(L)^{R} \cdot c^{R} & \text { Fact } 1 \\
& =\operatorname{preorder}(R)^{R} \cdot \operatorname{preorder}(L)^{R} \cdot c & \text { Fact } 2 \\
& =\operatorname{postorder}(\operatorname{mirror}(R)) \cdot \operatorname{postorder}(\operatorname{mirror}(L)) \cdot c & \text { by } 1 . H . \\
& =\operatorname{postorder}(\operatorname{Char} \operatorname{Tree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L)) & \text { recursive defn of postorder } \\
& =\operatorname{postorder}(\operatorname{mirror}(\operatorname{Char} \operatorname{Tree}(L, c, R))) & \text { recursive defn of mirror } \\
& =\operatorname{postorder}(\operatorname{mirror}(T)) & \operatorname{defn} \text { of } T
\end{array}
$$

So $P($ CharTree $(L, c, R))$ holds.
By the principle of induction, $P(T)$ holds for all CharTrees T.

1. Structural Induction: Strings

Recursive Definition of a String:

- Basis Step: ϵ is a string
- Recursive Step: If w is a string and a is a character, $w \bullet a$ is a string (the string w with the character a appended on to the end)

Recursive functions on String:

Length:

$$
\begin{array}{ll}
\operatorname{len}(\epsilon) & =0 \\
\operatorname{len}(w \bullet a) & =1+\operatorname{len}(w)
\end{array}
$$

Reverse:

$$
\begin{array}{lll}
\operatorname{rev}(\epsilon) & & =\epsilon \\
\operatorname{rev}(w \bullet a) & & =a \bullet \operatorname{rev}(w)
\end{array}
$$

Statement to Prove:

Prove that for any string x, len $(\operatorname{rev}(x))=\operatorname{len}(x)$.

Solution:

For a string x, let $\mathrm{P}(x)$ be "len $(\operatorname{rev}(x))=\operatorname{len}(x)$ ". We prove $\mathrm{P}(x)$ for all strings x by structural induction on the set of strings.

Base Case $(x=\epsilon)$: By definition of reverse, $\operatorname{len}(\operatorname{rev}(\epsilon))=\operatorname{len}(\epsilon)$. So $\mathrm{P}(\epsilon)$ holds.
Inductive Hypothesis: Suppose $\mathrm{P}(w)$ holds for some arbitrary string w. Then $\operatorname{len}(\operatorname{rev}(w))=\operatorname{len}(w)$.
Inductive Step: Goal: Show that $\mathrm{P}(w \bullet a)$ holds for any character a.
Let a be an arbitrary character.

$$
\begin{aligned}
\operatorname{len}(\operatorname{rev}(w \bullet a)) & =\operatorname{len}(a \bullet \operatorname{rev}(w)) & & {[\text { By Definition of reverse }] } \\
& =1+\operatorname{len}(\operatorname{rev}(w)) & & {[\text { By Definition of length }] } \\
& =1+\operatorname{len}(w) & & {[\text { By IH }] } \\
& =\operatorname{len}(w \bullet a) & & {[\text { By Definition of length }] }
\end{aligned}
$$

This proves $\mathrm{P}(w \bullet a)$.
Conclusion: $\mathrm{P}(x)$ holds for all strings x by structural induction.

2. Structural Induction: Dictionaries
 Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then $(a \rightarrow b):: \mathrm{D}$ is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

$$
\begin{array}{llrr}
\text { AllKeys(}[\mathrm{l}) & =[] & \operatorname{len}([]) & =0 \\
\text { AllKeys }((a \rightarrow b):: \mathrm{D}) & =a:: \operatorname{AllKeys}(\mathrm{D}) & \operatorname{len}((a \rightarrow b):: \mathrm{D}) & =1+\operatorname{len}(\mathrm{D})
\end{array}
$$

Recursive functions on Sets:

$$
\begin{array}{ll}
\operatorname{len}([]) & =0 \\
\operatorname{len}(a:: \mathrm{C}) & =1+\operatorname{len}(\mathrm{C})
\end{array}
$$

Statement to prove:

Prove that len $(\mathrm{D})=\operatorname{len}(\operatorname{AllKeys}(\mathrm{D}))$.

Solution:

Proof. Define $P(D)$ to be len $(D)=\operatorname{len}(\operatorname{AllKeys}(D))$ for a Dictionary D. We will go by structural induction to show $\mathrm{P}(\mathrm{D})$ for all dictionaries D .
Base Case: D = []: Note that:

$$
\begin{aligned}
\operatorname{len}(\mathrm{D}) & =\operatorname{len}([]) & \\
& =\operatorname{len}(\operatorname{AllKeys}([])) & \text { [Definition of AllKeys] } \\
& =\operatorname{len}(\operatorname{AllK} \operatorname{Keys}(D)) &
\end{aligned}
$$

Inductive Hypothesis: Suppose $\mathrm{P}(\mathrm{C})$ to be true for an arbitrary dictionary C .
Inductive Step:
Let $\mathrm{D}^{\prime}=(a \rightarrow b)::$ C. Note that:

$$
\begin{aligned}
\operatorname{len}((a \rightarrow b):: \mathrm{C}) & =1+\operatorname{len}(\mathrm{C}) & & \text { [Definition of Len] } \\
& =1+\operatorname{len}(\operatorname{AllKeys}(\mathrm{C})) & & {[\mathrm{H}] } \\
& =\operatorname{len}(a:: \operatorname{AllKeys}(\mathrm{C})) & & {[\text { Definition of Len] }} \\
& =\operatorname{len}(\operatorname{All} \operatorname{Keys}((a \rightarrow b):: \mathrm{C})) & & {[\text { Definition of AllKeys] }}
\end{aligned}
$$

So P(D') holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction.

3. Structural Induction: CFGs

Consider the following CFG:

$$
S \rightarrow S S|0 S 1| 1 S 0 \mid \epsilon
$$

Prove that every string generated by this CFG has an equal number of 1 's and 0 's.
Hint: You may wish to define the functions $\#_{0}(x), \#_{1}(x)$ on a string x.

Solution:

First we observe that the language defined by this CFG can be represented by a recursively defined set. Define a set S as follows:
Basis Rule: $\epsilon \in S$
Recursive Rule: If $x, y \in S$, then $0 x 1,1 x 0, x y \in S$.
Now we perform structural induction on the recursively defined set. Define the functions $\#_{0}(t), \#_{1}(t)$ to be the number of 0 's and 1 's respectively in the string t.

Proof. For a string t, let $\mathrm{P}(t)$ be defined as " $\#_{0}(t)=\#_{1}(t)$ ". We will prove $\mathrm{P}(t)$ is true for all strings $t \in S$ by structural induction.
Base Case $(t=\epsilon)$: By definition, the empty string contains no characters, so $\#_{0}(t)=0=\#_{1}(t)$
Inductive Hypothesis: Suppose $\mathrm{P}(x), \mathrm{P}(y)$ hold for some arbitrary strings x, y.

Inductive Step:

Case 1: Goal is to show $\mathrm{P}(0 x 1)$ holds.
By the $\mathrm{IH}, \#_{0}(x)=\#_{1}(x)$. Then observe that:

$$
\#_{0}(0 x 1)=\#_{0}(x)+1=\#_{1}(x)+1=\#_{1}(0 x 1)
$$

Therefore $\#_{0}(0 x 1)=\#_{1}(0 x 1)$. This proves $\mathrm{P}(0 x 1)$.
Case 2: Goal is to show $\mathrm{P}(1 x 0)$ holds.
By the IH, $\#_{0}(x)=\#_{1}(x)$. Then observe that:

$$
\#_{0}(1 x 0)=\#_{0}(x)+1=\#_{1}(x)+1=\#_{1}(1 x 0)
$$

Therefore $\#_{0}(1 x 0)=\#_{1}(1 x 0)$. This proves $\mathrm{P}(1 x 0)$.
Case 3: Goal is to show $\mathrm{P}(x y)$ holds.
By the $\mathrm{IH}, \#_{0}(x)=\#_{1}(x)$ and $\#_{0}(y)=\#_{1}(y)$. Then observe that:

$$
\#_{0}(x y)=\#_{0}(x)+\#_{0}(y)=\#_{1}(x)+\#_{1}(y)=\#_{1}(x y)
$$

Therefore $\#_{0}(x y)=\#_{1}(x y)$. This proves $\mathrm{P}(x y)$.
So by structural induction, $\mathrm{P}(t)$ is true for all strings $t \in S$.

4. Regular Expressions

(a) Consider the following Regular Expression (RegEx):

$$
1(45 \cup 54)^{\star} 1
$$

List 5 strings accepted by the RegEx and 5 strings from $T:=\{1,4,5\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words.

Solution:

Accepted:

- 1451
- 1541
- 145541
- 1454545451
- 11

Rejected:

- 1
- 1441
- 45
- 14451
- 111

This RegEx accepts exactly those strings that start and end with a 1, and have one or more pairs of 45 or 54 in the middle.
(b) Consider the following Regular Expression (RegEx):

$$
0^{\star}(0 \cup 1)^{\star}((01) \cup(11) \cup(10) \cup(00)) 1^{\star}(0 \cup 1)^{\star}
$$

List 3 strings accepted by the RegEx and 3 strings from $S:=\{0,1\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

Solution:

Accepted:

- 01
- 10
- 10100100101

Rejected:

- ϵ
- 0
- 1

This RegEx accepts all binary strings that are 2 or more characters long. A simpler RegEx for this is $(0 \cup 1)(0 \cup 1)(0 \cup 1)^{\star}$.

5. Constructing Regular Expressions

For each of the following, construct a regular expression for the specified language.
(a) Strings from the language $S:=\{a\}^{*}$ with an even number of a 's.

Solution:

$(a a)^{*}$
(b) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's.

Solution:

$b^{*}\left(b^{*} a b^{*} a b^{*}\right)^{*}$
(c) Strings from the language $S:=\{a, b\}^{*}$ with odd length.

Solution:

$(a a \cup a b \cup b a \cup b b)^{*}(a \cup b)$
(d) (Challenge) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

Solution:

$b^{*}\left(b^{*} a b^{*} a b^{*}\right)^{*} \cup\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*} b\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*}$

