CSE 390Z: Mathematics of Computing
Week 8 Workshop Solutions

0. Structural Induction: CharTrees
Recursive Definition of CharTrees:

= Basis Step: Null is a CharTree
» Recursive Step: If L, R are CharTrees and ¢ € 3, then CharTree(L,c, R) is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

The preorder function returns the preorder traversal of all elements in a CharTree.

preorder(Null) =
preorder(CharTree(L,c, R)) = c- preorder(L) - preorder(R)

The postorder function returns the postorder traversal of all elements in a CharTree.

postorder(Null) =¢
postorder(CharTree(L,c, R)) = postorder(L) - postorder(R) - ¢

The mirror function produces the mirror image of a CharTree.

mirror(Null) = Null
mirror(CharTree(L,c, R)) = CharTree(mirror(R),c, mirror(L))

Finally, for all strings x, let the “reversal” of 2 (in symbols ) produce the string in reverse order.

Additional Facts:
You may use the following facts:

» For any strings =1, ...,z (1 ... xp

R:

= For any character ¢, ¢ c

Statement to Prove:
Show that for every CharTree T', the reversal of the preorder traversal of T is the same as the postorder
traversal of the mirror of 7. In notation, you should prove that for every CharTree, T [preorder(T)]¥ =
postorder(mirror(7T)).

There is an example and space to work on the next page.



Example for Intuition:

Let T; be the tree above.

preorder(T;) ="abcd". This tree is mirror(7T;).

T; is built as (null,a,U) postorder(mirror(7;)) ="dcba",

Where U is (V,b, W), “dcba” is the reversal of “abcd” so

V = (null, ¢, null), W = (null, d,null). [preorder(T;)] ¥ = postorder(mirror(T;)) holds for T;
Solution:

Let P(T) be “[preorder(T")]®* = postorder(mirror(T))". We show P(T') holds for all CharTrees T" by structural
induction.

Base case (7' = Null): preorder(T)f* = £f! = ¢ = postorder(Null) = postorder(mirror(Null)), so P(Null)
holds.

Inductive hypothesis: Suppose P(L) A P(R) for arbitrary CharTrees L, R.

Inductive step: We want to show P(CharTree(L,c, R)),

i.e. [preorder(CharTree(L,c, R))]® = postorder(mirror(CharTree(L,c, R))).

Let ¢ be an arbitrary element in ¥, and let 7' = CharTree(L, ¢, R)

preorder(T")f* = [c - preorder(L) - preorder(R)]* defn of preorder
— preorder(R) - preorder(L)% - ¢t Fact 1
— preorder(R) - preorder(L)% - ¢ Fact 2
= postorder(mirror(R)) - postorder(mirror(L)) - ¢ by I.H.
= postorder(CharTree(mirror(R), ¢, mirror(L)) recursive defn of postorder
= postorder(mirror(CharTree(L, ¢, R))) recursive defn of mirror
= postorder(mirror(7T’)) defn of T'

So P(CharTree(L, ¢, R)) holds.
By the principle of induction, P(T') holds for all CharTrees T



1. Structural Induction: Strings
Recursive Definition of a String:
= Basis Step: ¢ is a string

» Recursive Step: If w is a string and a is a character, w e a is a string
(the string w with the character a appended on to the end)

Recursive functions on String:

Length:
len(e) =0
len(wea) =1+ len(w)
Reverse:
rev(e) =€
reviwea) =aerev(w)

Statement to Prove:
Prove that for any string z, len(rev(z)) = len(x).

Solution:

For a string z, let P(x) be "len(rev(x)) = len(x)". We prove P(x) for all strings = by structural induction on
the set of strings.

Base Case (z = ¢): By definition of reverse, len(rev(¢)) = len(e¢). So P(e) holds.

Inductive Hypothesis: Suppose P(w) holds for some arbitrary string w. Then len(rev(w)) = len(w).

Inductive Step: ‘Goal: Show that P(w e a) holds for any character a. ‘

Let a be an arbitrary character.

len(rev(w @ a)) = len(a @ rev(w)) [By Definition of reverse]
= 1+ len(rev(w)) [By Definition of length]
=1+ len(w) [By IH]
= len(w ® a) [By Definition of length]
This proves P(w e a).

Conclusion: P(z) holds for all strings = by structural induction.



2. Structural Induction: Dictionaries
Recursive definition of a Dictionary (i.e. a Map):

» Basis Case: [] is the empty dictionary

= Recursive Case: If D is a dictionary, and a and b are elements of the universe, then (a — b) :: D is a
dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

AllKeys([1) =[] len([]) =0
AllKeys((a — b) :: D) = a :: AllKeys(D) len((a — ) :: D) =1+len(D)

Recursive functions on Sets:

len([1) =0
len(a:: C) =1+41len(C)

Statement to prove:
Prove that len(D) = len(AllKeys(D)).

Solution:

Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to
show P(D) for all dictionaries D.
Base Case: D = []: Note that:

len(D) = len([1)
= len(AllKeys([1)) [Definition of AllKeys]
= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C.
Inductive Step:
Let D' = (a — b) :: C. Note that:

len((a — b) :: C) =1+ len(C) [Definition of Len]
=1+ len(AllKeys(C)) [IH]
= len(a :: AllKeys(C)) [Definition of Len]
= len(AllKeys((a — b) :: C)) [Definition of AllKeys]

So P(D’") holds.
Conclusion: Thus, the claim holds for all dictionaries D by structural induction. O



3. Structural Induction: CFGs
Consider the following CFG:
S —SS|0S1]150 ¢

Prove that every string generated by this CFG has an equal number of 1's and 0's.
Hint: You may wish to define the functions #¢(x), #1(z) on a string z.

Solution:

First we observe that the language defined by this CFG can be represented by a recursively defined set. Define
a set S as follows:

Basis Rule: ¢ € S

Recursive Rule: If z,y € S, then 0x1,120,2y € S.

Now we perform structural induction on the recursively defined set. Define the functions #¢(t), #1(t) to be the
number of 0's and 1's respectively in the string ¢.

Proof. For a string t, let P(t) be defined as "#(t) = #1(¢)". We will prove P(t) is true for all strings t € S
by structural induction.

Base Case (t = ¢): By definition, the empty string contains no characters, so #(t) = 0 = #1(t)

Inductive Hypothesis: Suppose P(x), P(y) hold for some arbitrary strings z, y.

Inductive Step:
Case 1: Goal is to show P(0zx1) holds.
By the IH, #¢(x) = #1(z). Then observe that:

#O(Oxl) = #0(1’) +1= #1(1‘) +1= #1(0331)
Therefore #0(0x1) = #1(0x1). This proves P(0x1).

Case 2: Goal is to show P(1z0) holds.
By the IH, #o(z) = #1(z). Then observe that:

#o(120) = #o(z) + 1 = #1(z) + 1 = #1(120)
Therefore #0(120) = #1(120). This proves P(1z0).

Case 3: Goal is to show P(zy) holds.
By the IH, #o(z) = #1(z) and #0(y) = #1(y). Then observe that:

#o(zy) = #o(x) + F#oy) = #1(x) + #1(y) = #1(2y)
Therefore #o(zy) = #1(zy). This proves P(zy).
So by structural induction, P(t) is true for all strings t € S. O



4. Regular Expressions
(a) Consider the following Regular Expression (RegEx):

1(45 U 54)*1

List 5 strings accepted by the RegEx and 5 strings from T := {1,4,5}* rejected by the RegEx. Then,
summarize this RegEx in your own words.

Solution:

Accepted: Rejected:
» 1451 » 1
» 1541 1441
= 145541 = 45
= 1454545451 = 14451
» 11 » 111

This RegEx accepts exactly those strings that start and end with a 1, and have one or more pairs of 45
or 54 in the middle.

Consider the following Regular Expression (RegEx):
0*(0U 1)*((01) U (11) U (10) U (00))1* (O LU 1)~

List 3 strings accepted by the RegEx and 3 strings from S := {0,1}* rejected by the RegEx. Then,
summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of
strings.

Solution:

Accepted: Rejected:
= 01 " €
= 10 = 0
= 10100100101 w1

This RegEx accepts all binary strings that are 2 or more characters long. A simpler RegEx for this is
(ul)(oul)(OUIL)™



5. Constructing Regular Expressions
For each of the following, construct a regular expression for the specified language.
(a) Strings from the language S := {a}* with an even number of a's.

Solution:

(aa)*
(b) Strings from the language S := {a, b}* with an even number of a's.

Solution:
b*(b*ab*ab*)*

(c) Strings from the language S := {a,b}* with odd length.

Solution:
(aa U abUba Ubb)*(aUb)

(d) (Challenge) Strings from the language S := {a, b}* with an even number of a's or an odd number of b's.

Solution:
b*(b*ab*ab*)* U (a* U a*ba*ba*)*b(a* U a*ba*ba™)*



