CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop Solutions

Name:	Collaborators:

Conceptual Review

Set Theory

(a) **Definitions**

 $\begin{array}{ll} \text{Set Equality:} & A = B := \forall x (x \in A \leftrightarrow x \in B) \\ \text{Subset:} & A \subseteq B := \forall x (x \in A \to x \in B) \\ \text{Union:} & A \cup B := \{x \ : \ x \in A \lor x \in B\} \\ \text{Intersection:} & A \cap B := \{x \ : \ x \in A \land x \in B\} \\ \text{Set Difference:} & A \setminus B = A - B := \{x \ : \ x \in A \land x \notin B\} \\ \text{Set Complement:} & \overline{A} = A^C := \{x \ : \ x \notin A\} \end{array}$

Powerset: $\mathcal{P}(A) := \{B : B \subseteq A\}$

Cartesian Product: $A \times B := \{(a, b) : a \in A, b \in B\}$

(b) How do we prove that for sets A and B, $A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.

(c) How do we prove that for sets A and B, A=B?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

Number Theory

(d) **Definitions**

```
a divides b: a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)
a is congruent to b modulo m: a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)
```

(e) What's the Division Theorem?

Solution:

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}$ with d > 0, there exist unique integers q, r with $0 \le r < d$, such that a = dq + r.

Set Theory

1. Set Operations

Let $A = \{1, 2, 5, 6, 8\}$ and $B = \{2, 3, 5\}$.

(a) What is the set $A \cap (B \cup \{2, 8\})$?

Solution:

 $\{2, 5, 8\}$

(b) What is the set $\{10\} \cup (A \setminus B)$?

Solution:

 $\{1, 6, 8, 10\}$

(c) What is the set $\mathcal{P}(B)$?

Solution:

$$\{\{2,3,5\},\{2,3\},\{2,5\},\{3,5\},\{2\},\{3\},\{5\},\emptyset\}$$

(d) How many elements are in the set $A \times B$? List 3 of the elements.

Solution:

15 elements, for example (1,2), (1,3), (1,5).

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$.

(b) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

Solution:

 \Rightarrow

Let $x \in A \cap (A \cup B)$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap (A \cup B) \subseteq A$.

 \Leftarrow

Let $x \in A$ be arbitrary. So certainly $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$. Since $x \in A$ and $x \in A \cup B$, by definition of intersection, $x \in A \cap (A \cup B)$. Since x was arbitrary, $A \subseteq A \cap (A \cup B)$.

Thus we have shown that $A \cap (A \cup B) = A$ through two subset proofs.

(c) Prove that $A \cap (A \cup B) = A \cup (A \cap B)$ for any sets A, B.

Solution:

 \Rightarrow

Let $x \in A \cap (A \cup B)$ be arbitrary. Then by definition of intersection $x \in A$ and $x \in A \cup B$. Since $x \in A$, then certainly $x \in A$ or $x \in A \cap B$. Then by definition of union. $x \in A \cup (A \cap B)$. Thus since x was arbitrary, we have shown $A \cap (A \cup B) \subseteq A \cup (A \cap B)$.

 \Leftarrow

Let $x \in A \cup (A \cap B)$ be arbitrary. Then by definition of union, $x \in A$ or $x \in A \cap B$. Then by definition of intersection, $x \in A$, or $x \in A$ and $x \in B$. Then by distributivity, $x \in A$ or $x \in A$, and $x \in A$ or $x \in B$. Then by idempotency, $x \in A$, and $x \in A$ or $x \in B$. Then by definition of union, $x \in A$, and $x \in A \cup B$. Then by definition of intersection, $x \in A \cap (A \cup B)$. Thus since x was arbitrary, we have shown that $A \cup (A \cap B) \subseteq A \cap (A \cup B)$.

Thus we have shown $A \cap (A \cup B) = A \cup (A \cap B)$ through two subset proofs.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form x = (y, z), where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in (A \cup B)$. Similarly, since $z \in C$, certainly $z \in C$ or $z \in D$. Then by definition, $z \in (C \cup D)$. Since x = (y, z), then $x \in (A \cup B) \times (C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq (A \cup B) \times (C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Solution:

Let X be an arbitrary set in $\mathcal{P}(A)$. By definition of power set, $X\subseteq A$. We need to show that $X\in\mathcal{P}(B)$, or equivalently, that $X\subseteq B$. Let $x\in X$ be arbitrary. Since $X\subseteq A$, it must be the case that $x\in A$. We were given that $A\subseteq B$. By definition of subset, any element of A is an element of B. So, it must also be the case that $x\in B$. Since x was arbitrary, we know any element of X is an element of B. By definition of subset, $X\subseteq B$. By definition of power set, $X\in\mathcal{P}(B)$. Since X was an arbitrary set, any set in $\mathcal{P}(A)$ is in $\mathcal{P}(B)$, or, by definition of subset, $\mathcal{P}(A)\subseteq\mathcal{P}(B)$.

5. Set Prove or Disprove

(a) Prove or disprove: For any sets A and B, $A \cup B \subseteq A \cap B$.

Solution:

We wish to disprove this claim via a counterexample. Choose $A=\{1\}$, $B=\varnothing$. Note that $A\cup B=\{1\}\cup\varnothing=\{1\}$ by definition of set union. Note that $A\cap B=\{1\}\cap\varnothing=\varnothing$ by definition of set intersection. $\{1\}\not\subseteq\varnothing$, so the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it is not the case that $A\cup B\not\subseteq A\cap B$ for all sets A and B.

(b) Prove or disprove: For any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Solution:

Let A, B, C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Let x be an arbitrary element of A. Then, by definition of subset, $x \in B$, and by definition of subset again, $x \in C$. Since x was an arbitrary element

of A, we see that all elements of A are in C, so by definition of subset, $A \subseteq C$. So, for any sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Number Theory

6. Modular Computation

- (a) Circle the statements below that are true. Recall for $a,b\in\mathbb{Z}$: a|b iff $\exists k\in\mathbb{Z}\ (b=ka)$.
 - (a) 1|3
 - (b) 3|1
 - (c) 2|2018
 - (d) -2|12
 - (e) $1 \cdot 2 \cdot 3 \cdot 4 | 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

Solution:

- (a) True
- (b) False
- (c) True
- (d) True
- (e) True
- (b) Circle the statements below that are true.

Recall for $a,b,m\in\mathbb{Z}$ and m>0: $a\equiv b\ (\mathrm{mod}\ m)$ iff m|(a-b).

- (a) $-3 \equiv 3 \pmod{3}$
- (b) $0 \equiv 9000 \pmod{9}$
- (c) $44 \equiv 13 \pmod{7}$
- (d) $-58 \equiv 707 \; (\text{mod } 5)$
- (e) $58 \equiv 707 \pmod{5}$

Solution:

- (a) True
- (b) True
- (c) False
- (d) True
- (e) False

7. Modular Addition

Let m be a positive integer. Prove that if $a \equiv b \pmod m$ and $c \equiv d \pmod m$, then $a+c \equiv b+d \pmod m$. Solution:

Let m>0, a,b,c,d be arbitrary integers. Assume that $a\equiv b\pmod m$ and $c\equiv d\pmod m$. Then by definition of mod, $m\mid (a-b)$ and $m\mid (c-d)$. Then by definition of divides, there exists some integer k such that a-b=mk, and there exists some integer j such that c-d=mj. Then (a-b)+(c-d)=mk+mj. Rearranging, (a+c)-(b+d)=m(k+j). Then by definition of divides, $m\mid (a+c)-(b+d)$. Then by definition of congruence, $a+c\equiv b+d\pmod m$.

8. Divisibility Proof

Let the domain of discourse be integers. Consider the following claim:

$$\forall n \forall d \ ((d \mid n) \rightarrow (-d \mid n))$$

(a) Translate the claim into English.

Solution:

For integers n, d, if $d \mid n$, then $-d \mid n$.

(b) Write an English proof that the claim holds.

Solution:

Let d,n be arbitrary integers, and suppose d|n. By definition of divides, there exists some integer k such that $n=dk=1\cdot dk$. Note that $-1\cdot -1=1$. Substituting, we see n=(-1)(-1)dk. Rearranging, we have $n=(-d)(-1\cdot k)$. Since k is an integer, $-1\cdot k$ is an integer because the integers are closed under multiplication. So, by definition of divides, -d|n. Since d and n were arbitrary, it follows that for any integers d and n, if d|n, then -d|n.

9. Modular Multiplication

Write an English proof to prove that for an integer m>0 and any integers a,b,c,d, if $a\equiv b\pmod m$ and $c\equiv d\pmod m$, then $ac\equiv bd\pmod m$.

Solution:

Let m>0, a,b,c,d be arbitrary integers. Assume that $a\equiv b\pmod m$ and $c\equiv d\pmod m$. Then by definition of mod, $m\mid (a-b)$ and $m\mid (c-d)$. Then by definition of divides, there exists some integer k such that a-b=mk, and there exists some integer j such that c-d=mj. Then a=b+mk and c=d+mj. So, multiplying, $ac=(b+mk)(d+mj)=bd+mkd+mjb+m^2jk=bd+m(kd+jb+mjk)$. Subtracting bd from both sides, ac-bd=m(kd+jb+mjk). By definition of divides, $m\mid ac-bd$. Then by definition of congruence, $ac\equiv bd\pmod m$.

10. Another Divisibility Proof

Write an English proof to prove that if k is an odd integer, then $4 \mid k^2 - 1$.

Solution:

Let k be an arbitrary odd integer. Then by definition of odd, k=2j+1 for some integer j. Then $k^2-1=(2j+1)^2-1=4j^2+4j+1-1=4j^2+4j=4(j^2+j)$. Then by definition of divides, $4\mid k^2-1$.