0. Structural Induction: CharTrees

Recursive Definition of CharTrees:

- Basis Step: Null is a CharTree
- Recursive Step: If L, R are CharTrees and $c \in \Sigma$, then $\operatorname{CharTree}(L, c, R)$ is also a CharTree

Intuitively, a CharTree is a tree where the non-null nodes store a char data element.

Recursive functions on CharTrees:

- The preorder function returns the preorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\operatorname{preorder}(\operatorname{Null}) & =\varepsilon \\
\operatorname{preorder}(\operatorname{CharTree}(L, c, R)) & =c \cdot \operatorname{preorder}(L) \cdot \operatorname{preorder}(R)
\end{array}
$$

- The postorder function returns the postorder traversal of all elements in a CharTree.

$$
\begin{array}{ll}
\text { postorder }(\operatorname{Null}) & =\varepsilon \\
\operatorname{postorder}(\operatorname{CharTree}(L, c, R)) & =\operatorname{postorder}(L) \cdot \operatorname{postorder}(R) \cdot c
\end{array}
$$

- The mirror function produces the mirror image of a CharTree.

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Null}) & =\operatorname{Null} \\
\operatorname{mirror}(\operatorname{CharTree}(L, c, R)) & =\operatorname{CharTree}(\operatorname{mirror}(R), c, \operatorname{mirror}(L))
\end{array}
$$

- Finally, for all strings x, let the "reversal" of x (in symbols x^{R}) produce the string in reverse order.

Additional Facts:

You may use the following facts:

- For any strings $x_{1}, \ldots, x_{k}:\left(x_{1} \cdot \ldots \cdot x_{k}\right)^{R}=x_{k}^{R} \cdot \ldots \cdot x_{1}^{R}$
- For any character $c, c^{R}=c$

Statement to Prove:

Show that for every CharTree T, the reversal of the preorder traversal of T is the same as the postorder traversal of the mirror of T. In notation, you should prove that for every CharTree, T : $[\operatorname{preorder}(T)]^{R}=$ postorder $(\operatorname{mirror}(T))$.

There is an example and space to work on the next page.

Example for Intuition:

Let T_{i} be the tree above.
preorder $\left(T_{i}\right)=$ "abcd".
T_{i} is built as (null, a, U)
Where U is (V, b, W),
$V=($ null,c, null $), W=(n u l l, d, n u l l)$.

This tree is mirror $\left(T_{i}\right)$.
postorder $\left(\operatorname{mirror}\left(T_{i}\right)\right)=$ "dcba",
"dcba" is the reversal of "abcd" so
$\left[\operatorname{preorder}\left(T_{i}\right)\right]^{R}=\operatorname{postorder}\left(\operatorname{mirror}\left(T_{i}\right)\right)$ holds for T_{i}

1. Structural Induction: Strings

Recursive Definition of a String:

- Basis Step: ϵ is a string
- Recursive Step: If w is a string and a is a character, $w \bullet a$ is a string (the string w with the character a appended on to the end)

Recursive functions on String:

Length:

$$
\begin{array}{ll}
\operatorname{len}(\epsilon) & =0 \\
\operatorname{len}(w \bullet a) & =1+\operatorname{len}(w)
\end{array}
$$

Reverse:

$$
\begin{array}{ll}
\operatorname{rev}(\epsilon) & \\
\operatorname{rev}(w \bullet a) & =a \bullet \operatorname{rev}(w)
\end{array}
$$

Statement to Prove:

Prove that for any string x, len $(\operatorname{rev}(x))=\operatorname{len}(x)$.

2. Structural Induction: Dictionaries

Recursive definition of a Dictionary (i.e. a Map):

- Basis Case: [] is the empty dictionary
- Recursive Case: If D is a dictionary, and a and b are elements of the universe, then $(a \rightarrow b):: \mathrm{D}$ is a dictionary that maps a to b (in addition to the content of D).

Recursive functions on Dictionaries:

$$
\begin{array}{llrr}
\text { AllKeys(}[\mathrm{C}) & =[] & \operatorname{len}([]) & =0 \\
\text { AllKeys }((a \rightarrow b):: \mathrm{D}) & =a:: \operatorname{AllKeys}(\mathrm{D}) & \operatorname{len}((a \rightarrow b):: \mathrm{D}) & =1+\operatorname{len}(\mathrm{D})
\end{array}
$$

Recursive functions on Sets:

$$
\begin{array}{ll}
\operatorname{len}([]) & \\
\operatorname{len}(a:: C) & =1+\operatorname{len}(C)
\end{array}
$$

Statement to prove:

Prove that len $(\mathrm{D})=\operatorname{len}(\operatorname{AllKeys}(\mathrm{D}))$.

3. Structural Induction: CFGs

Consider the following CFG:

$$
S \rightarrow S S|0 S 1| 1 S 0 \mid \epsilon
$$

Prove that every string generated by this CFG has an equal number of 1 's and 0 's.
Hint: You may wish to define the functions $\#_{0}(x), \#_{1}(x)$ on a string x.

4. Regular Expressions

(a) Consider the following Regular Expression (RegEx):

$$
1(45 \cup 54)^{\star} 1
$$

List 5 strings accepted by the RegEx and 5 strings from $T:=\{1,4,5\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words.
(b) Consider the following Regular Expression (RegEx):

$$
0^{\star}(0 \cup 1)^{\star}((01) \cup(11) \cup(10) \cup(00)) 1^{\star}(0 \cup 1)^{\star}
$$

List 3 strings accepted by the RegEx and 3 strings from $S:=\{0,1\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

5. Constructing Regular Expressions

For each of the following, construct a regular expression for the specified language.
(a) Strings from the language $S:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's.
(c) Strings from the language $S:=\{a, b\}^{*}$ with odd length.
(d) (Challenge) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

