CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop

Name: _

_ Collaborators: ____

Conceptual Review

Set Theory

(a) **Definitions**

- (b) How do we prove that for sets A and B, $A \subseteq B$?
- (c) How do we prove that for sets A and B, A = B?

Number Theory

(d) **Definitions**

 $a \text{ divides } b: \quad a \mid b \quad \leftrightarrow \quad \exists k \in \mathbb{Z} \ (b = ka)$ $a \text{ is congruent to } b \text{ modulo } m: \quad a \equiv b \ (\text{mod } m) \quad \leftrightarrow \quad m \mid (a - b)$

(e) What's the Division Theorem?

Set Theory

1. Set Operations

Let $A = \{1, 2, 5, 6, 8\}$ and $B = \{2, 3, 5\}$.

- (a) What is the set $A \cap (B \cup \{2, 8\})$?
- (b) What is the set $\{10\} \cup (A \setminus B)$?
- (c) What is the set $\mathcal{P}(B)$?
- (d) How many elements are in the set $A \times B$? List 3 of the elements.

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.

(b) Prove that $A \cap (A \cup B) = A$ for any sets A, B.

(c) Prove that $A \cap (A \cup B) = A \cup (A \cap B)$ for any sets A, B.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq (A \cup B) \times (C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Set Prove or Disprove

(a) Prove or disprove: For any sets A and B, $A \cup B \subseteq A \cap B$.

(b) Prove or disprove: For any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Number Theory

6. Modular Computation

- (a) Circle the statements below that are true. Recall for $a, b \in \mathbb{Z}$: a|b iff $\exists k \in \mathbb{Z} \ (b = ka)$.
 - (a) 1|3
 - (b) 3|1
 - (c) 2|2018
 - (d) -2|12
 - (e) $1 \cdot 2 \cdot 3 \cdot 4 | 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
- (b) Circle the statements below that are true. Recall for $a, b, m \in \mathbb{Z}$ and m > 0: $a \equiv b \pmod{m}$ iff m|(a - b).
 - (a) $-3 \equiv 3 \pmod{3}$
 - (b) $0 \equiv 9000 \pmod{9}$
 - (c) $44 \equiv 13 \pmod{7}$
 - (d) $-58 \equiv 707 \pmod{5}$
 - (e) $58 \equiv 707 \pmod{5}$

7. Modular Addition

Let m be a positive integer. Prove that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

8. Divisibility Proof

Let the domain of discourse be integers. Consider the following claim:

 $\forall n \forall d \ ((d \mid n) \to (-d \mid n))$

- (a) Translate the claim into English.
- (b) Write an English proof that the claim holds.

9. Modular Multiplication

Write an English proof to prove that for an integer m > 0 and any integers a, b, c, d, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

10. Another Divisibility Proof

Write an English proof to prove that if k is an odd integer, then $4 | k^2 - 1$.