CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm 2 Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice midterm. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 3 problems on this exam, totaling 60 points.

1. Predicate Translation [20 points]

Let the domain of discourse be people. Translate the following statements to predicate logic, using the following predicates:

Student $(x):=x$ is a student
$\operatorname{Professor}(x):=x$ is a professor
EnrolledlnClass $(x, y):=x$ is enrolled a class taught by y

You may also use $=$ and \neq as predicates.
(a) (5 points) Every professor has at least one student enrolled in their class.

Solution:

$\forall x(\operatorname{Professor}(x) \rightarrow \exists y(\operatorname{Student}(y) \wedge$ EnrolledlnClass $(y, x)))$
(b) (5 points) There's a student who is enrolled in two different professors' classes.

Solution:

$\exists x($ Student $(x) \wedge \exists y(\operatorname{Professor}(y) \wedge$ EnrolledlnClass $(x, y)) \wedge \exists z(\operatorname{Professor}(z) \wedge(z \neq y) \wedge$ EnrolledlnClass $(x, z)))$
(c) (5 points) There's a professor who is enrolled in another professor's class.

Solution:

$\exists x \exists y(\operatorname{Professor}(x) \wedge \operatorname{Professor}(y) \wedge$ EnrolledlnClass $(x, y))$
(d) (5 points) All students are enrolled in some class, taught by some professor. (May not be the same professor for everyone).

Solution:

$\forall x($ Student $(x) \rightarrow \exists y(\operatorname{Professor}(y) \wedge$ EnrolledlnClass $(x, y)))$

2. Set Proof [20 points]

Suppose that for sets A, B, C, the facts $A \subseteq B$ and $B \subseteq C$ are given. Write an English proof to show that $B \times A \subseteq C \times C$.

Solution:

Suppose that for sets A, B, C, we have $A \subseteq B$ and $B \subseteq C$ (these are our givens). Let $x \in B \times A$ be arbitrary. Then by definition of Cartesian Product, $x=(y, z)$ for $y \in B$ and $z \in A$. Then since $y \in B$ and $B \subseteq C$, $y \in C$. Similarly since $z \in A$ and $A \subseteq B, z \in B$. Then since $z \in B$ and $B \subseteq C$, we have $z \in C$. Therefore we have shown that $y \in C$ and $z \in C$. Then by definition of Cartesian Product, $x \in C \times C$. Since x was arbitrary, we have shown $B \times A \subseteq C \times C$.
3. Induction [20 points]

Prove by induction on n that for all integers $n \geq 0$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true.

Solution:

1. Let $P(n)$ be " $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ ". We will prove $P(n)$ is true for all $n \in \mathbb{N}$, by induction.
2. Base case $(\mathrm{n}=0):(3+\pi)^{0}=1$ and $3^{0}+0 \cdot \pi \cdot 3^{-1}=1$, since $1 \geq 1, P(0)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}$.
4. Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show }(3+\pi)^{k+1} \geq 3^{k+1}+(k+1) \pi 3^{(k+1)-1}=3^{k+1}+(k+1) \pi 3^{k}
$$

$$
\begin{array}{rlrl}
(3+\pi)^{k+1} & =(3+\pi)^{k} \cdot(3+\pi) & & \text { (Factor out }(3+\pi)) \\
& \geq\left(3^{k}+k 3^{k-1} \pi\right) \cdot(3+\pi) & & \text { (By I.H., }(3+\pi) \geq 0) \\
& =3 \cdot 3^{k}+3^{k} \pi+3 k 3^{k-1} \pi+k 3^{k-1} \pi^{2} & & \text { (Distributive property) } \\
& =3^{k+1}+3^{k} \pi+k 3^{k} \pi+k 3^{k-1} \pi^{2} & & \text { (Simplify) } \\
& =3^{k+1}+(k+1) 3^{k} \pi+k 3^{k-1} \pi^{2} & & \text { (Factor out }(k+1)) \\
& \geq 3^{k+1}+(k+1) \pi 3^{k} & \left(k 3^{k-1} \pi^{2} \geq 0\right)
\end{array}
$$

5. So by induction, $P(n)$ is true for all $n \in \mathbb{N}$.
