# **CSE 390Z:** Mathematics for Computation Workshop

# **Practice 311 Final Solutions**

Name: \_\_\_\_\_

UW ID: \_\_\_\_\_

## Instructions:

- This is a **simulated practice final**. You will **not** be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be an hour and 50 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.

## 1. All the Machines! [15 points]

Let the alphabet be  $\Sigma = \{a, b\}$ . Consider the language  $L = \{w \in \Sigma^* : \text{every } a \text{ has a } b \text{ two characters later}\}$ . In other words, L is the language of all strings in the alphabet a, b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include  $\varepsilon$ , *abb*, *aabb*, *bbbbabb*. Some strings not in L include a, *ab*, *aab*, *ababb*. Notice that the last two characters of the string cannot be an a.

(a) (5 points) Give a regular expression that represents L.

# Solution:

 $(b \cup abb \cup aabb)^*$ 

(b) (5 points) Give a CFG that represents L.

# Solution:

 $\mathbf{S} \rightarrow b\mathbf{S} \mid aabb\mathbf{S} \mid abb\mathbf{S} \mid \varepsilon$ 

(c) (5 points) Give a DFA that represents L.

# Solution:



#### 2. Induction 1 [20 points]

Recall the recursive definition of a list of integers:

- [] is the empty list
- If L is a list and a is an integer, then a :: L is a list whose first element is a, followed by the elements of L.

Consider the following functions defined on lists: len([]) = 0len(x :: L) = 1 + len(L)

inc([]) = []inc(x :: L) = (x + 1) :: inc(L)

sum([]) = 0sum(x :: L) = x + sum(L)

Prove that for all lists L, sum(inc(L)) = sum(L) + len(L).

### Solution:

Let P(L) be "sum(inc(L)) = sum(L) + len(L)". We prove that P(L) is true for all lists L by structural induction.

**Base Case:** L = []. Then:

| sum(inc([])) = sum([])    | Definition of inc      |
|---------------------------|------------------------|
| = 0                       | Definition of sum      |
| = 0 + 0                   | Algebra                |
| $= sum([\ ]) + len([\ ])$ | Definition of sum, len |

**Inductive Hypothesis:** Suppose that P(L) is true for an arbitrary list L. **Inductive Step:** We aim to show that P(x :: L) holds.

| sum(inc(x :: L)) = sum((x + 1) :: inc(L)) | Definition of inc      |
|-------------------------------------------|------------------------|
| = (x+1) + sum(inc(L))                     | Definition of sum      |
| = (x+1) + sum(L) + len(L)                 | Inductive Hypothesis   |
| = x + sum(L) + 1 + len(L)                 | Algebra                |
| = sum(x :: L) + len(x :: L)               | Definition of sum, len |

So P(x :: L) holds.

**Conclusion:** Thus P(L) holds for all lists L by structural induction.

#### 3. Induction 2 [20 points]

Consider the following recursive definition of  $a_n$ :

$$a_{1} = 1$$

$$a_{2} = 1$$

$$a_{n} = \frac{1}{2}(a_{n-1} + \frac{2}{a_{n-2}})$$
for  $n > 2$ 

Prove that  $1 \le a_n \le 2$  for all integers  $n \ge 1$ .

#### Solution:

Define P(n) to be  $1 \le a_n \le 2$ . We prove P(n) holds for all integers  $n \ge 1$  by strong induction.

**Base Case** P(1), P(2) Observe that  $a_1 = a_2 = 1$ , and  $1 \le 1 \le 2$ . So P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all  $1 \le j \le k$  for some arbitrary integer  $k \ge 2$ . **Inductive Step:** 

$$\begin{aligned} a_{k+1} &= \frac{1}{2} \left( a_k + \frac{2}{a_{k-1}} \right) \\ &= \frac{a_k}{2} + \frac{1}{a_{k-1}} \\ &\leq \frac{2}{2} + \frac{1}{a_{k-1}} \\ &\leq 1 + \frac{1}{1} \end{aligned} \qquad \text{By IH, since } a_k \leq 2 \\ &\leq 1 + \frac{1}{1} \end{aligned} \qquad \text{By IH, since } a_{k-1} \geq 1, \text{ so } \frac{1}{a_{k-1}} \leq \frac{1}{1} \\ &= 2 \end{aligned}$$

$$\begin{split} a_{k+1} &= \frac{1}{2} (a_k + \frac{2}{a_{k-1}}) \\ &= \frac{a_k}{2} + \frac{1}{a_{k-1}} \\ &\ge \frac{1}{2} + \frac{1}{a_{k-1}} \\ &\ge \frac{1}{2} + \frac{1}{2} \\ &= 1 \end{split}$$
 By IH, since  $a_{k-1} \le 2$ , so  $\frac{1}{a_{k-1}} \ge \frac{1}{2}$ 

So  $1 \le a_{k+1} \le 2$ . Conclusion: Thus we have proven P(n) for all integers  $n \ge 1$  by strong induction.

#### 4. Modular Arithmetic [10 points]

(a) Prove or disprove: If  $a \equiv b \pmod{10}$ , then  $a \equiv b \pmod{5}$ . [5 points]

## Solution:

True. Suppose that  $a \equiv b \pmod{10}$ . Then  $10 \mid (a-b)$ . Then there exists some integer k such that a-b = 10k for some integer k. In particular, a-b = 5(2k). Then  $5 \mid (a-b)$ . So  $a \equiv b \pmod{5}$ .

(b) Prove or disprove: If  $a \equiv b \pmod{10}$ , then  $a \equiv b \pmod{20}$ . [5 points]

#### Solution:

False. For example, for a = 1 and b = 11. Then  $a \equiv b \pmod{10}$ , but  $a \not\equiv b \pmod{20}$ .

#### 5. Irregularity [20 points]

Prove that the set of strings  $\{0^n 10^n : n \ge 0\}$  is not regular.

## Solution:

 $L = \{0^n 10^n : n \ge 0\}$ . Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider  $S = \{0^n : n \ge 0\}$ . Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are  $0^i$  and  $0^j$  for some  $i, j \ge 0$  such that  $i \ne j$ . Append the string  $10^i$  to both of these strings. The two resulting strings are:

 $a = 0^i 10^i$  Note that  $a \in L$ .

 $b = 0^j 10^i$  Note that  $b \notin L$ , since  $i \neq j$ .

Since a and b end up in the same state, but  $a \in L$  and  $b \notin L$ , that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.