Name: ________________________________

UW ID: ______________________________

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be an hour and 50 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.
1. All the Machines! [15 points]
Let the alphabet be \(\Sigma = \{a, b\} \). Consider the language \(L = \{w \in \Sigma^* : \text{every } a \text{ has a } b \text{ two characters later}\} \).
In other words, \(L \) is the language of all strings in the alphabet \(a, b \) where after any \(a \), the character after the \(a \) can be anything, but the character after that one must be a \(b \).

Some strings in \(L \) include \(\varepsilon, abb, aabb, bbbabb \). Some strings not in \(L \) include \(a, ab, aab, ababb \). Notice that the last two characters of the string cannot be an \(a \).

(a) (5 points) Give a regular expression that represents \(L \).

Solution:
\[(b \cup abb \cup aabb)^*\]

(b) (5 points) Give a CFG that represents \(L \).

Solution:
\[S \rightarrow bS \mid aabbS \mid abbS \mid \varepsilon\]

(c) (5 points) Give a DFA that represents \(L \).

Solution:
2. Induction 1 [20 points]
Recall the recursive definition of a list of integers:

- \([\]\) is the empty list
- If \(L\) is a list and \(a\) is an integer, then \(a :: L\) is a list whose first element is \(a\), followed by the elements of \(L\).

Consider the following functions defined on lists:

\[
\begin{align*}
\text{len}([\] &= 0 \\
\text{len}(x :: L) &= 1 + \text{len}(L) \\
\text{inc}([\]) &= [] \\
\text{inc}(x :: L) &= (x + 1) :: \text{inc}(L) \\
\text{sum}([\]) &= 0 \\
\text{sum}(x :: L) &= x + \text{sum}(L)
\end{align*}
\]

Prove that for all lists \(L\), \(\text{sum(inc}(L)) = \text{sum}(L) + \text{len}(L)\).

Solution:
Let \(P(L)\) be "\(\text{sum(inc}(L)) = \text{sum}(L) + \text{len}(L)\)". We prove that \(P(L)\) is true for all lists \(L\) by structural induction.

Base Case: \(L = [\]\). Then:

\[
\begin{align*}
\text{sum}(\text{inc}([\])) &= \text{sum}([\]) & \text{Definition of inc} \\
&= 0 & \text{Definition of sum} \\
&= 0 + 0 & \text{Algebra} \\
&= \text{sum}([\] + \text{len}([\])) & \text{Definition of sum, len}
\end{align*}
\]

Inductive Hypothesis: Suppose that \(P(L)\) is true for an arbitrary list \(L\).

Inductive Step: We aim to show that \(P(x :: L)\) holds.

\[
\begin{align*}
\text{sum}(\text{inc}(x :: L)) &= \text{sum}((x + 1) :: \text{inc}(L)) & \text{Definition of inc} \\
&= (x + 1) + \text{sum}(\text{inc}(L)) & \text{Definition of sum} \\
&= (x + 1) + \text{sum}(L) + \text{len}(L) & \text{Inductive Hypothesis} \\
&= x + \text{sum}(L) + 1 + \text{len}(L) & \text{Algebra} \\
&= \text{sum}(x :: L) + \text{len}(x :: L) & \text{Definition of sum, len}
\end{align*}
\]

So \(P(x :: L)\) holds.

Conclusion: Thus \(P(L)\) holds for all lists \(L\) by structural induction.
3. Induction 2 [20 points]
Consider the following recursive definition of a_n:

\[
a_1 = 1 \\
a_2 = 1 \\
a_n = \frac{1}{2}(a_{n-1} + \frac{2}{a_{n-2}}) \quad \text{for } n > 2
\]

Prove that $1 \leq a_n \leq 2$ for all integers $n \geq 1$.

Solution:
Define $P(n)$ to be $1 \leq a_n \leq 2$. We prove $P(n)$ holds for all integers $n \geq 1$ by strong induction.

Base Case $P(1), P(2)$ Observe that $a_1 = a_2 = 1$, and $1 \leq 1 \leq 2$. So $P(1)$ and $P(2)$ hold.

Inductive Hypothesis: Suppose that $P(j)$ is true for all $1 \leq j \leq k$ for some arbitrary integer $k \geq 2$.

Inductive Step:

\[
a_{k+1} = \frac{1}{2}(a_k + \frac{2}{a_{k-1}}) \\
= \frac{a_k}{2} + \frac{1}{a_{k-1}} \\
\leq \frac{2}{2} + \frac{1}{a_{k-1}} \quad \text{By IH, since } a_k \leq 2 \\
\leq 1 + \frac{1}{1} \quad \text{By IH, since } a_{k-1} \geq 1, \text{ so } \frac{1}{a_{k-1}} \leq \frac{1}{1} \\
= 2
\]

\[
a_{k+1} = \frac{1}{2}(a_k + \frac{2}{a_{k-1}}) \\
= \frac{a_k}{2} + \frac{1}{a_{k-1}} \\
\geq \frac{1}{2} + \frac{1}{a_{k-1}} \quad \text{By IH, since } a_k \geq 1 \\
\geq \frac{1}{2} + \frac{1}{2} \quad \text{By IH, since } a_{k-1} \leq 2, \text{ so } \frac{1}{a_{k-1}} \geq \frac{1}{2} \\
= 1
\]

So $1 \leq a_{k+1} \leq 2$.

Conclusion: Thus we have proven $P(n)$ for all integers $n \geq 1$ by strong induction.
4. Modular Arithmetic [10 points]
(a) Prove or disprove: If \(a \equiv b \pmod{10} \), then \(a \equiv b \pmod{5} \). [5 points]

Solution:
True. Suppose that \(a \equiv b \pmod{10} \). Then \(10 \mid (a - b) \). Then there exists some integer \(k \) such that \(a - b = 10k \) for some integer \(k \). In particular, \(a - b = 5(2k) \). Then \(5 \mid (a - b) \). So \(a \equiv b \pmod{5} \).

(b) Prove or disprove: If \(a \equiv b \pmod{10} \), then \(a \equiv b \pmod{20} \). [5 points]

Solution:
False. For example, for \(a = 1 \) and \(b = 11 \). Then \(a \equiv b \pmod{10} \), but \(a \not\equiv b \pmod{20} \).
5. Irregularity [20 points]
Prove that the set of strings \(\{0^n10^n : n \geq 0\} \) is not regular.

Solution:
\(L = \{0^n10^n : n \geq 0\} \). Let \(D \) be an arbitrary DFA, and suppose for contradiction that \(D \) accepts \(L \). Consider \(S = \{0^n : n \geq 0\} \). Since \(S \) contains infinitely many strings and \(D \) has a finite number of states, two strings in \(S \) must end up in the same state. Say these strings are \(0^i \) and \(0^j \) for some \(i, j \geq 0 \) such that \(i \neq j \). Append the string \(10^i \) to both of these strings. The two resulting strings are:

- \(a = 0^i10^i \) Note that \(a \in L \).
- \(b = 0^j10^i \) Note that \(b \notin L \), since \(i \neq j \).

Since \(a \) and \(b \) end up in the same state, but \(a \in L \) and \(b \notin L \), that state must be both an accept and reject state, which is a contradiction. Since \(D \) was arbitrary, there is no DFA that recognizes \(L \), so \(L \) is not regular.