CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be an hour and 50 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.

1. All the Machines! [15 points]

Let the alphabet be $\Sigma=\{a, b\}$. Consider the language $L=\left\{w \in \Sigma^{*}\right.$: every a has a b two characters later $\}$. In other words, L is the language of all strings in the alphabet a, b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include $\varepsilon, a b b, a a b b, b b b b a b b$. Some strings not in L include $a, a b, a a b, a b a b b$. Notice that the last two characters of the string cannot be an a.
(a) (5 points) Give a regular expression that represents L.

Solution:

$$
(b \cup a b b \cup a a b b)^{*}
$$

(b) (5 points) Give a CFG that represents L.

Solution:

$\mathbf{S} \rightarrow b \mathbf{S}|a a b b \mathbf{S}| a b b \mathbf{S} \mid \varepsilon$
(c) (5 points) Give a DFA that represents L.

Solution:

2. Induction 1 [20 points]

Recall the recursive definition of a list of integers:

- [] is the empty list
- If L is a list and a is an integer, then $a:: L$ is a list whose first element is a, followed by the elements of L.

Consider the following functions defined on lists:
$\operatorname{len}([])=0$
$\operatorname{len}(x:: L)=1+\operatorname{len}(L)$
$\operatorname{inc}([])=[]$
$\operatorname{inc}(x:: L)=(x+1):: \operatorname{inc}(L)$
$\operatorname{sum}([])=0$
$\operatorname{sum}(x:: L)=x+\operatorname{sum}(L)$

Prove that for all lists L, $\operatorname{sum}(\operatorname{inc}(L))=\operatorname{sum}(L)+\operatorname{len}(L)$.

Solution:

Let $\mathrm{P}(L)$ be "sum $(\operatorname{inc}(L))=\operatorname{sum}(L)+\operatorname{len}(L)$ ". We prove that $\mathrm{P}(L)$ is true for all lists L by structural induction.
Base Case: $\quad L=[]$. Then:

$$
\begin{aligned}
\operatorname{sum}(\operatorname{inc}([])) & =\operatorname{sum}([]) & & \text { Definition of inc } \\
& =0 & & \text { Definition of sum } \\
& =0+0 & & \text { Algebra } \\
& =\operatorname{sum}([])+\operatorname{len}([]) & & \text { Definition of sum, len }
\end{aligned}
$$

Inductive Hypothesis: Suppose that $\mathrm{P}(L)$ is true for an arbitrary list L.
Inductive Step: We aim to show that $\mathrm{P}(x:: L)$ holds.

$$
\begin{aligned}
\operatorname{sum}(\operatorname{inc}(x:: L)) & =\operatorname{sum}((x+1):: \operatorname{inc}(L)) & & \text { Definition of inc } \\
& =(x+1)+\operatorname{sum}(\operatorname{inc}(L)) & & \text { Definition of sum } \\
& =(x+1)+\operatorname{sum}(L)+\operatorname{len}(L) & & \text { Inductive Hypothesis } \\
& =x+\operatorname{sum}(L)+1+\operatorname{len}(L) & & \text { Algebra } \\
& =\operatorname{sum}(x:: L)+\operatorname{len}(x:: L) & & \text { Definition of sum, len }
\end{aligned}
$$

So $\mathrm{P}(x:: L)$ holds.
Conclusion: Thus $\mathrm{P}(L)$ holds for all lists L by structural induction.

3. Induction 2 [20 points]

Consider the following recursive definition of a_{n} :

$$
\begin{array}{ll}
a_{1} & =1 \\
a_{2} & =1 \\
a_{n} & =\frac{1}{2}\left(a_{n-1}+\frac{2}{a_{n-2}}\right)
\end{array} \quad \text { for } n>2
$$

Prove that $1 \leq a_{n} \leq 2$ for all integers $n \geq 1$.

Solution:

Define $\mathrm{P}(n)$ to be $1 \leq a_{n} \leq 2$. We prove $\mathrm{P}(n)$ holds for all integers $n \geq 1$ by strong induction.
Base Case $\mathrm{P}(1), \mathrm{P}(2)$ Observe that $a_{1}=a_{2}=1$, and $1 \leq 1 \leq 2$. So $\mathrm{P}(1)$ and $\mathrm{P}(2)$ hold.
Inductive Hypothesis: Suppose that $\mathrm{P}(j)$ is true for all $1 \leq j \leq k$ for some arbitrary integer $k \geq 2$. Inductive Step:

$$
\begin{aligned}
a_{k+1} & =\frac{1}{2}\left(a_{k}+\frac{2}{a_{k-1}}\right) & & \\
& =\frac{a_{k}}{2}+\frac{1}{a_{k-1}} & & \text { By IH, since } a_{k} \leq 2 \\
& \leq \frac{2}{2}+\frac{1}{a_{k-1}} & & \text { By IH, since } a_{k-1} \geq 1, \text { so } \frac{1}{a_{k-1}} \leq \frac{1}{1} \\
& \leq 1+\frac{1}{1} & & \\
& =2 & & \\
a_{k+1} & =\frac{1}{2}\left(a_{k}+\frac{2}{a_{k-1}}\right) & & \text { By IH, since } a_{k} \geq 1 \\
& =\frac{a_{k}}{2}+\frac{1}{a_{k-1}} & & \text { By IH, since } a_{k-1} \leq 2, \text { so } \frac{1}{a_{k-1}} \geq \frac{1}{2} \\
& \geq \frac{1}{2}+\frac{1}{a_{k-1}} & &
\end{aligned}
$$

So $1 \leq a_{k+1} \leq 2$.
Conclusion: Thus we have proven $\mathrm{P}(n)$ for all integers $n \geq 1$ by strong induction.
4. Modular Arithmetic [10 points]
(a) Prove or disprove: If $a \equiv b(\bmod 10)$, then $a \equiv b(\bmod 5)$. [5 points]

Solution:

True. Suppose that $a \equiv b(\bmod 10)$. Then $10 \mid(a-b)$. Then there exists some integer k such that $a-b=10 k$ for some integer k. In particular, $a-b=5(2 k)$. Then $5 \mid(a-b)$. So $a \equiv b(\bmod 5)$.
(b) Prove or disprove: If $a \equiv b(\bmod 10)$, then $a \equiv b(\bmod 20)$. [5 points]

Solution:

False. For example, for $a=1$ and $b=11$. Then $a \equiv b(\bmod 10)$, but $a \not \equiv b(\bmod 20)$.

5. Irregularity [20 points]

Prove that the set of strings $\left\{0^{n} 10^{n}: n \geq 0\right\}$ is not regular.

Solution:

$L=\left\{0^{n} 10^{n}: n \geq 0\right\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\left\{0^{n}: n \geq 0\right\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are 0^{i} and 0^{j} for some $i, j \geq 0$ such that $i \neq j$. Append the string 10^{i} to both of these strings. The two resulting strings are:
$a=0^{i} 10^{i}$ Note that $a \in L$.
$b=0^{j} 10^{i}$ Note that $b \notin L$, since $i \neq j$.
Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.

