0 . NFAs 1

(a) Construct an NFA for the language "all binary strings ending in either 011 or 110".

Solution:

(b) Construct an equivalent DFA for the same language.

Solution:

1. NFAs 2

(a) Construct an NFA for the language "all strings from the alphabet $\Sigma=\{0,1,2\}$ containing only 0 's and 1 's, and at most one $1^{\prime \prime}$.
For instance, the strings $0000,0010,1000,0,1$, and ϵ should be accepted. The strings 0101, 2, 000020, 102000, 011, should be rejected.

Solution:

(b) Construct an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

2. DFA to NFA, DFA Minimization

Let L be the language where the alphabet is $\Sigma=\{0,1,3,9\}$ such that $w \in L$ iff. The string " 311 " is a substring of w.
(a) Give an NFA to accept strings in L.

Solution:

(b) Give an equivalent DFA for your NFA (using the algorithm from 311).

Solution:

(c) Is your DFA minimized? If not, give the minimized DFA using the algorithm from 311.

Solution:

