0. Notes on Conceptual Review
 Solution:

See slides for conceptual review.

1. RegEx, CFGs, and DFAs

Let $\Sigma=\{0,1,2\}$. Consider the language "all strings with an even number of 2 's."
(a) Design a regular expression for this language..

Solution:

$\left(0 \cup 1 \cup\left(2(0 \cup 1)^{*} 2\right)\right)^{*}$
(b) Design a CFG for this language.

Solution:

$S \rightarrow \varepsilon|0 S| 1 S \mid S 2 S 2 S$
(c) Design a DFA for this language.

Solution:

2. Constructing Regular Expressions

For each of the following, construct a regular expression for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.

Solution:

$(a a)^{*}$
(b) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an even number of a 's.

Solution:

$b^{*}\left(b^{*} a b^{*} a b^{*}\right)^{*}$
(c) Strings from the language $\Sigma:=\{a, b\}^{*}$ with odd length.

Solution:

$$
(a a \cup a b \cup b a \cup b b)^{*}(a \cup b)
$$

(d) (Challenge) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

Solution:

$$
b^{*}\left(b^{*} a b^{*} a b^{*}\right)^{*} \cup\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*} b\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*}
$$

3. Context Free Grammars

Consider the following CFG which generates strings from the language $\mathrm{V}:=\{0,1,2,3,4\}^{*}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow 0 \mathbf{X} 4 \\
& \mathbf{X} \rightarrow 1 \mathbf{X} 3 \mid 2
\end{aligned}
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:

- 024
- 01234
- 0112334
- 011123334
- 01111233334

Rejected:

- ϵ
- 2
- 0244
- 011234
- 10234

This CFG is all strings of the form $01^{m} 23^{m} 4$, where $m \geq 0$. That is, it's all strings made of one 0 , followed by zero or more 1's, followed by a 2, followed by the same number of 3 's as 1 's, followed by one 4 .

4. Constructing CFGs

For each of the following, construct a CFG for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.

Solution:

$$
\mathbf{S} \rightarrow a a \mathbf{S} \mid \varepsilon
$$

(b) Strings from the language $\Sigma:=\{a, b\}^{*}$ with odd length.

Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{C S}|a| b \\
& \mathbf{C} \rightarrow a a \mathbf{C}|a b \mathbf{C}| b a \mathbf{C}|b b \mathbf{C}| \varepsilon
\end{aligned}
$$

(c) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

Solution:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{E} \mid \mathbf{O} b \mathbf{O} \\
& \mathbf{E} \rightarrow \mathbf{E E}|a \mathbf{E} a| b \mid \varepsilon \\
& \mathbf{O} \rightarrow \mathbf{O O}|b \mathbf{O}| a \mid \varepsilon
\end{aligned}
$$

(d) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an equal number of a 's and b 's.

Solution:

$$
\mathbf{S} \rightarrow a \mathbf{S} b \mathbf{S}|b \mathbf{S} a \mathbf{S}| \varepsilon
$$

5. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.

Solution:

(b) Strings from the language $\Sigma=\{a, b\}$ with an even number of a 's or an odd number of b 's.

Solution:

(c) Strings from the language $\Sigma=\{a, b\}$ with odd length.

Solution:

6. Challenge: All the Machines!

Using the alphabet $\Sigma=\{0,1,2,3,4,5\}$, define the language L as follows. If x is a string from $\Sigma *$ with characters x_{0}, \ldots, x_{n}, then $x \in L$ iff: for every i between 0 and n, if x_{i} is an odd digit, then $x_{k}>x_{i}$ for every $k>i$. For example, if one of the digits is a 3 , ever digit after it must be a 4 or higher.
(a) List 3 strings in L and 3 strings from $\Sigma *$ not in L.

Solution:

Accepted:

- 145
- 135
- 12425
- 2004
- 2034

Rejected:

- 321
- 11
- 455
- 452
- 2010
(b) Construct a regular expression for the language L.

Solution:

$(0 \cup 2 \cup 4)^{*}(\varepsilon \cup 1)(2 \cup 4)^{*}(\varepsilon \cup 3) 4^{*}(\varepsilon \cup 5)$
(c) Construct a CFG for the language L.

Solution:

$$
\begin{aligned}
\mathbf{S} & \rightarrow 0 \mathbf{S}|2 \mathbf{S}| 4 \mathbf{S} \mid \mathbf{A} \\
\mathbf{A} & \rightarrow 1 \mathbf{B} \mid \mathbf{B} \\
\mathbf{B} & \rightarrow 2 \mathbf{B}|4 \mathbf{B}| \mathbf{C} \\
\mathbf{C} & \rightarrow 3 \mathbf{D} \mid \mathbf{D} \\
\mathbf{D} & \rightarrow 4 \mathbf{D} \mid \mathbf{E} \\
\mathbf{E} & \rightarrow 5 \mid \varepsilon
\end{aligned}
$$

(d) Construct a DFA for the language L.

Solution:

