CSE 390Z: Mathematics of Computing

Week 8 Workshop Solutions

0. Notes on Conceptual Review Solution:

See slides for conceptual review.

1. RegEx, CFGs, and DFAs

Let $\Sigma = \{0, 1, 2\}$. Consider the language "all strings with an even number of 2's."

(a) Design a regular expression for this language..

Solution:

 $(0 \cup 1 \cup (2(0 \cup 1)^*2))^*$

(b) Design a CFG for this language.

Solution:

 $S \rightarrow \varepsilon \mid 0S \mid 1S \mid S2S2S$

(c) Design a DFA for this language.

2. Constructing Regular Expressions

For each of the following, construct a regular expression for the specified language. (a) Strings from the language $\Sigma := \{a\}^*$ with an even number of a's.

Solution:

 $(aa)^*$

(b) Strings from the language $\Sigma := \{a, b\}^*$ with an even number of a's.

Solution:

 $b^{*}(b^{*}ab^{*}ab^{*})^{*}$

(c) Strings from the language $\Sigma := \{a, b\}^*$ with odd length.

 $(aa \cup ab \cup ba \cup bb)^*(a \cup b)$

(d) (Challenge) Strings from the language $\Sigma := \{a, b\}^*$ with an even number of a's or an odd number of b's.

Solution:

 $b^*(b^*ab^*ab^*)^* \cup (a^* \cup a^*ba^*ba^*)^*b(a^* \cup a^*ba^*ba^*)^*$

3. Context Free Grammars

Consider the following CFG which generates strings from the language V := $\{0, 1, 2, 3, 4\}^*$

 $\begin{array}{l} \mathbf{S} \rightarrow 0\mathbf{X}4 \\ \mathbf{X} \rightarrow 1\mathbf{X}3 \mid 2 \end{array}$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:	Rejected:
• 024	■ <i>€</i>
• 01234	■ 2
 0112334 	■ 0244
 011123334 	011234
01111233334	■ 10234

This CFG is all strings of the form $0 \ 1^m \ 2 \ 3^m \ 4$, where $m \ge 0$. That is, it's all strings made of one 0, followed by zero or more 1's, followed by a 2, followed by the same number of 3's as 1's, followed by one 4.

4. Constructing CFGs

For each of the following, construct a CFG for the specified language.

(a) Strings from the language $\Sigma := \{a\}^*$ with an even number of a's.

Solution:

 $\mathbf{S} \to aa\mathbf{S}|\varepsilon$

(b) Strings from the language $\Sigma := \{a, b\}^*$ with odd length.

Solution:

$$S \to CS|a|b$$
$$C \to aaC|abC|baC|bbC|\varepsilon$$

(c) Strings from the language $\Sigma := \{a, b\}^*$ with an even number of a's or an odd number of b's.

$$\begin{split} \mathbf{S} &\to \mathbf{E} | \mathbf{O} b \mathbf{O} \\ \mathbf{E} &\to \mathbf{E} \mathbf{E} | a \mathbf{E} a | b | \varepsilon \\ \mathbf{O} &\to \mathbf{O} \mathbf{O} | b \mathbf{O} b | a | \varepsilon \end{split}$$

(d) Strings from the language $\Sigma := \{a, b\}^*$ with an equal number of a's and b's.

Solution:

$$S \rightarrow aSbS|bSaS|\varepsilon$$

5. Constructing DFAs

For each of the following, construct a DFA for the specified language.

(a) Strings from the language $\Sigma := \{a\}^*$ with an even number of a's.

Solution:

(b) Strings from the language $\Sigma = \{a, b\}$ with an even number of a's or an odd number of b's.

Solution:

(c) Strings from the language $\Sigma = \{a, b\}$ with odd length.

6. Challenge: All the Machines!

Using the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5\}$, define the language L as follows. If x is a string from $\Sigma *$ with characters x_0, \ldots, x_n , then $x \in L$ iff: for every i between 0 and n, if x_i is an odd digit, then $x_k > x_i$ for every k > i. For example, if one of the digits is a 3, ever digit after it must be a 4 or higher.

(a) List 3 strings in L and 3 strings from $\Sigma *$ not in L.

Solution:

Accepted:	Rejected:
■ 145	• 321
• 135	 11
• 12425	• 455
2004	4 52
 2034 	2010

(b) Construct a regular expression for the language L.

Solution:

```
(0 \cup 2 \cup 4)^* (\varepsilon \cup 1)(2 \cup 4)^* (\varepsilon \cup 3) 4^* (\varepsilon \cup 5)
```

(c) Construct a CFG for the language L.

Solution:

$$\begin{split} \mathbf{S} &\rightarrow 0\mathbf{S}|2\mathbf{S}|4\mathbf{S}|\mathbf{A}\\ \mathbf{A} &\rightarrow 1\mathbf{B}|\mathbf{B}\\ \mathbf{B} &\rightarrow 2\mathbf{B}|4\mathbf{B}|\mathbf{C}\\ \mathbf{C} &\rightarrow 3\mathbf{D}|\mathbf{D}\\ \mathbf{D} &\rightarrow 4\mathbf{D}|\mathbf{E}\\ \mathbf{E} &\rightarrow 5|\varepsilon \end{split}$$

(d) Construct a DFA for the language L.

