CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm Solutions

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice midterm. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 90 points.

1. Predicate Translation [15 points]

Let the domain of discourse be novels, comic books, movies, and TV shows. Translate the following statements to predicate logic, using the following predicates:
$\operatorname{Novel}(x):=x$ is a novel
$\operatorname{Comic}(x):=x$ is a comic book
$\operatorname{Movie}(x):=x$ is a movie
$\operatorname{Show}(x):=x$ is a TV show
Adaptation $(x, y):=x$ is an adaptation of y
(a) (5 points) A novel cannot be adapted into both a movie and a TV show.

Solution:

$$
\forall x(\operatorname{Novel}(x) \rightarrow \forall m \forall s((\operatorname{Movie}(m) \wedge \operatorname{Show}(s)) \rightarrow \neg(\operatorname{Adaptation}(m, x) \wedge \operatorname{Adaptation}(s, x)))
$$

(b) (5 points) Every movie is an adaptation of a novel or a comic book.

Solution:

$$
\forall m(\operatorname{Movie}(m) \rightarrow \exists x(\operatorname{Adaptation}(m, x) \wedge(\operatorname{Novel}(x) \vee \operatorname{Comic}(x))))
$$

(c) (5 points) Every novel has been adapted into exactly one movie.

Solution:

$\forall x(\operatorname{Novel}(x) \rightarrow \exists m(\operatorname{Movie}(m) \wedge \operatorname{Adaptation}(m, x) \wedge \forall n((\operatorname{Movie}(n) \wedge(n \neq m)) \rightarrow \neg \operatorname{Adaptation}(n, x))))$
OR
$\forall x(\operatorname{Novel}(x) \rightarrow \exists m(\operatorname{Movie}(m) \wedge \operatorname{Adaptation}(m, x) \wedge \forall n(\operatorname{Adaptation}(n, x) \rightarrow(\neg \operatorname{Movie}(n) \vee n=m))))$
OR
$\forall x(\operatorname{Novel}(x) \rightarrow \exists m(\operatorname{Movie}(m) \wedge \operatorname{Adaptation}(m, x) \wedge \forall n((\operatorname{Adaptation}(n, x) \wedge \operatorname{Movie}(n)) \rightarrow(n=m))))$
*Note that a great exercise is to show that the above 3 solutions are all logically equivalent :)

2. Circuits [15 points]

The boolean function f takes in three boolean inputs x_{1}, x_{2}, x_{3}, and outputs $\neg\left(\left(x_{1} \oplus x_{2}\right) \wedge x_{3}\right)$.
Note: You may write your solutions using boolean algebra or propositional logic notation.
(a) (5 points) Draw a truth table for f.

Solution:

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
T	T	T	T
T	T	F	T
T	F	T	F
T	F	F	T
F	T	T	F
F	T	F	T
F	F	T	T
F	F	F	T

(b) (5 points) Write f as a sum-of-products expression.

Solution:

$$
\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \vee\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right)
$$

(c) (5 points) Write f as a products-of-sums expression.

Solution:

$\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$
3. Number Theory Proof [20 points]

Recall this definition of odd: $\operatorname{Odd}(x):=\exists y(x=2 y+1)$. Write an English proof to show that for all odd integers k, the statement $8 \mid k^{2}-1$ holds.

Hint: At some point in your proof, you'll need to show that for any integer $a, a(a+1)$ is even. When you reach this point, feel free to break your proof up into the case where a is even, and the case where a is odd.

Solution:

Let k be an arbitrary odd integer. Then $k=2 a+1$ for some integer a. Then $k^{2}-1=(2 a+1)^{2}-1=$ $4 a^{2}+4 a+1-1=4 a^{2}+4 a=4 a(a+1)$.

Consider the case where a is odd. Then $a=2 b+1$ for some integer b. Then $k^{2}-1=4 a(a+1)=$ $4(2 b+1)(2 b+2)=8(2 b+1)(b+1)$. By closure of integers under multiplication and addition, $k^{2}-1=8 c$ for an integer c. Thus in this case, $8 \mid k^{2}-1$.

Consider the case where a is even. Then $a=2 b$ for some integer b. Then $k^{2}-1=4 a(a+1)=4(2 b)(2 b+1)=$ $8 b(2 b+1)$. By closure of integers under multiplication and addition, $k^{2}-1=8 c$ for an integer c. Thus in this case, $8 \mid k^{2}-1$.

So in all cases, $8 \mid k^{2}-1$. Since k was an arbitrary odd integer, we have proved the claim.

4. Set Proof [20 points]

Suppose that for sets A, B, C, the facts $A \subseteq B$ and $B \subseteq C$ are given. Write an English proof to show that $B \times A \subseteq C \times C$.

Solution:

Suppose that for sets A, B, C, we have $A \subseteq B$ and $B \subseteq C$ (these are our givens). Let $x \in B \times A$ be arbitrary. Then by definition of Cartesian Product, $x=(y, z)$ for $y \in B$ and $z \in A$. Then since $y \in B$ and $B \subseteq C$, $y \in C$. Similarly since $z \in A$ and $A \subseteq B, z \in B$. Then since $z \in B$ and $B \subseteq C$, we have $z \in C$. Therefore we have shown that $y \in C$ and $z \in C$. Then by definition of Cartesian Product, $x \in C \times C$. Since x was arbitrary, we have shown $B \times A \subseteq C \times C$.

5. Induction [20 points]

Prove by induction that $(1+\pi)^{n}>1+n \pi$ for all integers $n \geq 2$.

Solution:

1. Let $\mathrm{P}(n)$ be the statement " $(1+\pi)^{n}>1+n \pi$ ". We prove $\mathrm{P}(n)$ for all integers $n \geq 2$ by induction.
2. Base Case: When $n=2$, the LHS is $(1+\pi)^{2}=1+2 \pi+\pi^{2}$. The RHS is $1+2 \pi$. Since $\pi^{2}>0$, $1+2 \pi+\pi^{2}>1+2 \pi$, so the Base Case holds.
3. Inductive Hypothesis: Suppose that $\mathrm{P}(k)$ holds for some arbitrary integer $k \geq 2$. Then $(1+\pi)^{k}>1+k \pi$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(1+\pi)^{k+1}>1+(k+1) \pi$

$$
\begin{aligned}
(1+\pi)^{k+1} & =(1+\pi)(1+\pi)^{k} & & \text { Definition of Exponent } \\
& >(1+\pi)(1+k \pi) & & \text { By IH } \\
& =1+\pi+k \pi+k \pi^{2} & & \text { Algebra } \\
& =1+(k+1) \pi+k \pi^{2} & & \text { Algebra } \\
& >1+(k+1) \pi & & \text { Since } k \pi^{2}>0
\end{aligned}
$$

Thus $(1+\pi)^{k+1}>1+(k+1) \pi$. So $\mathrm{P}(k+1)$ holds.
5. Thus we have proven $\mathrm{P}(n)$ for all integers $n \geq 2$ by induction.

