CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop Solutions

0. Induction: Divides

Prove that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n>1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ ". We will prove $P(n)$ for all integers $n>1$ by induction.
Base Case $(n=2): 2^{3}+(2+1)^{3}+(2+2)^{3}=8+27+64=99=9 \cdot 11$, so $9 \mid 2^{3}+(2+1)^{3}+(2+2)^{3}$, so $P(2)$ holds.

Inductive Hypothesis: Assume that $9 \mid k^{3}+(k+1)^{3}+(k+2)^{3}$ for an arbitrary integer $k>1$. Note that this is equivalent to assuming that $k^{3}+(k+1)^{3}+(k+2)^{3}=9 j$ for some integer j by the definition of divides.

Inductive Step: Goal: Show $9 \mid(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$

$$
\begin{aligned}
(k+1)^{3}+(k+2)^{3}+(k+3)^{3} & =\left(k^{2}+6 k+9\right)(k+3)+(k+1)^{3}+(k+2)^{3} & & \text { [expanding trinomial] } \\
& =\left(k^{3}+6 k^{2}+9 k+3 k^{2}+18 k+27\right)+(k+1)^{3}+(k+2)^{3} & & \text { [expanding binomial] } \\
& =9 k^{2}+27 k+27+k^{3}+(k+1)^{3}+(k+2)^{3} & & \text { [adding like terms] } \\
& =9 k^{2}+27 k+27+9 j & & \text { [by I.H.] } \\
& =9\left(k^{2}+3 k+3+j\right) & & \text { [factoring out 9] }
\end{aligned}
$$

Since k and j are integers, $k^{2}+3 k+3+j$ is also an integer. Therefore, by the definition of divides, $9 \mid(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$, so $P(k) \rightarrow P(k+1)$ for an arbitrary integer $k>1$.

Conclusion: $P(n)$ holds for all integers $n>1$ by induction.

1. Induction: Equality

For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=1^{2}+2^{2}+\cdots+n^{2}
$$

Prove that for all $n \in \mathbb{N}, S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

Solution:

Let $\mathrm{P}(n)$ be the statement " $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$ " defined for all $n \in \mathbb{N}$. We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Base Case: When $n=0$, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0 . Thus, $S_{0}=0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1)=0$, we know that $\mathrm{P}(0)$ is true.

Inductive Hypothesis: Suppose that $\mathrm{P}(k)$ is true for some arbitrary $k \in \mathbb{N}$.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show $S_{k+1}=\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$
Examining S_{k+1}, we see that

$$
S_{k+1}=1^{2}+2^{2}+\cdots+k^{2}+(k+1)^{2}=S_{k}+(k+1)^{2} .
$$

By the inductive hypothesis, we know that $S_{k}=\frac{1}{6} k(k+1)(2 k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$
\begin{aligned}
S_{k+1} & =S_{k}+(k+1)^{2} \\
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
& =(k+1)\left(\frac{1}{6} k(2 k+1)+(k+1)\right) \\
& =\frac{1}{6}(k+1)(k(2 k+1)+6(k+1)) \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\
& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)
\end{aligned}
$$

Thus, we can conclude that $\mathrm{P}(k+1)$ is true.
Conclusion: $P(n)$ holds for all integers $n \geq 0$ by the principle of induction.

2. Induction: Inequality

Prove by induction on n that for all integers $n \geq 0$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true. Solution:
Let $P(n)$ be " $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ ". We will prove $P(n)$ is true for all $n \in \mathbb{N}$, by induction.

Base Case: $(\mathrm{n}=0):(3+\pi)^{0}=1$ and $3^{0}+0 \cdot \pi \cdot 3^{-1}=1$, since $1 \geq 1, P(0)$ is true.
Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}$.

Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show }(3+\pi)^{k+1} \geq 3^{k+1}+(k+1) \pi 3^{(k+1)-1}=3^{k+1}+(k+1) \pi 3^{k}
$$

$$
\begin{array}{rlrl}
(3+\pi)^{k+1} & =(3+\pi)^{k} \cdot(3+\pi) & & \text { (Factor out }(3+\pi)) \\
& \geq\left(3^{k}+k 3^{k-1} \pi\right) \cdot(3+\pi) & & \text { (By I.H., }(3+\pi) \geq 0) \\
& =3 \cdot 3^{k}+3^{k} \pi+3 k 3^{k-1} \pi+k 3^{k-1} \pi^{2} & & \text { (Distributive property) } \\
& =3^{k+1}+3^{k} \pi+k 3^{k} \pi+k 3^{k-1} \pi^{2} & (\text { Simplify) } \\
& =3^{k+1}+(k+1) 3^{k} \pi+k 3^{k-1} \pi^{2} & & \text { (Factor out }(k+1)) \\
& \geq 3^{k+1}+(k+1) \pi 3^{k} & \left(k 3^{k-1} \pi^{2} \geq 0\right)
\end{array}
$$

Conclusion: So by induction, $P(n)$ is true for all $n \in \mathbb{N}$.

3. Induction: Another Inequality

Prove by induction on n that for all integers $n \geq 4$ the inequality $n!>2^{n}$ is true.
Solution:
Let $P(n)$ be " $n!>2^{n "}$. We will prove $P(n)$ is true for all $n \in \mathbb{N}, n \geq 4$, by induction.

Base Case: $(\mathrm{n}=4): 4!=24$ and $2^{4}=16$, since $24>16, P(4)$ is true.
Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}, k \geq 4$.
Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show }(k+1)!>2^{k+1}
$$

$$
\begin{aligned}
(k+1)! & =k!\cdot(k+1) \\
& >2^{k} \cdot(k+1) \\
& >2^{k} \cdot 2 \\
& =2^{k+1}
\end{aligned}
$$

Conclusion: So by induction, $P(n)$ is true for all $n \in \mathbb{N}, n \geq 4$.

4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \geq 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let $\mathrm{P}(n)$ be defined as "You can buy exactly n cents of stamps". We will prove $P(n)$ is true for all integers $n \geq 10$ by strong induction.

Base Cases: ($n=10,11,12$):

- $n=10: 10$ cents of stamps can be made from two 5 cent stamps.
- $n=11: 11$ cents of stamps can be made from one 5 cent and two 3 cent stamps.
- $n=12: 12$ cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 12, \mathrm{P}(10) \wedge \mathrm{P}(11) \wedge \ldots \wedge \mathrm{P}(k)$ holds.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can make $k+1$ cents in stamps.
We want to buy $k+1$ cents in stamps. By the I.H., we can buy exactly $(k+1)-3=k-2$ cents in stamps. Then, we can add another 3 cent stamp in order to buy $k+1$ cents in stamps, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-2)$, and add 3 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-2 \geq 10$. Adding 2 to both sides, we needed to be able to assume that $k \geq 12$. So, we have to prove the base cases up to 12 , that is: $10,11,12$.

Another way to think about this is that we had to use a fact from 3 steps back from $k+1$ to $k-2$ in the IS, so we needed 3 base cases.

Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 10$.

5. Strong Induction: Functions

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

Solution:

Let $\mathrm{P}(n)$ be defined as " $f(n)=n^{2 \prime \prime}$. We will prove $P(n)$ is true for all integers $n \geq 1$ by strong induction.
Base Cases: ($n=1,2,3$):

- $n=1: f(1)=1=1^{2}$.
- $n=2: f(2)=4=2^{2}$.
- $n=3: f(3)=9=3^{2}$

So the base cases hold.
Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 3, \mathrm{P}(1) \wedge \ldots \wedge \mathrm{P}(k)$ hold.
Inductive Step:
Goal: Show $P(k+1)$, i.e. show that $f(k+1)=(k+1)^{2}$.

$$
\begin{aligned}
f(k+1) & =f(k+1-1)-f(k+1-2)+f(k+1-3)+2(2(k+1)-3) & & \text { Definition of } \mathrm{f} \\
& =f(k)-f(k-1)+f(k-2)+2(2 k-1) & & \\
& =k^{2}-(k-1)^{2}+(k-2)^{2}+2(2 k-1) & & \\
& =k^{2}-\left(k^{2}-2 k+1\right)+\left(k^{2}-4 k+4\right)+4 k-2 & & \\
& =\left(k^{2}-k^{2}+k^{2}\right)+(2 k-4 k+4 k)+(-1+4-2) & & \\
& =k^{2}+2 k+1 & & \\
& =(k+1)^{2} & &
\end{aligned}
$$

So $\mathrm{P}(k+1)$ holds.
Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 1$.

6. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". We will prove $P(n)$ is true for all integers $n \geq 18$ by strong induction.

Base Cases: $(n=18,19,20,21)$:

- $n=18: 18$ packs of candy can be made up of 2 packs of 7 and 1 pack of $4(18=2 * 7+1 * 4)$.
- $n=19: 19$ packs of candy can be made up of 1 pack of 7 and 3 packs of $4(19=1 * 7+3 * 4)$.
- $n=20: 20$ packs of candy can be made up of 5 packs of $4(20=5 * 4)$.
- $n=21: 21$ packs of candy can be made up of 3 packs of $7(21=3 * 7)$.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 21, \mathrm{P}(18) \wedge \ldots \wedge \mathrm{P}(k)$ hold.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can buy $k+1$ packs of candy.
We want to buy $k+1$ packs of candy. By the I.H., we can buy exactly $k-3$ packs, so we can add another pack of 4 packs in order to buy $k+1$ packs of candy, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-3)$, and add 4 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-3 \geq 18$. Adding 3 to both sides, we needed to be able to assume that $k \geq 21$. So, we have to prove the base cases up to 21 , that is: $18,19,20,21$.
Another way to think about this is that we had to use a fact from 4 steps back from $k+1$ to $k-3$ in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 18$.

