
CSE 390Z: Mathematics for Computation Workshop
Week 5 Workshop Solutions

0. Induction: Divides
Prove that 9 | (n3 + (n+ 1)3 + (n+ 2)3) for all n > 1 by induction.
Solution:
Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23 + (2 + 1)3 + (2 + 2)3 = 8 + 27 + 64 = 99 = 9 · 11, so 9 | 23 + (2 + 1)3 + (2 + 2)3, so
P (2) holds.

Inductive Hypothesis: Assume that 9 | k3 + (k + 1)3 + (k + 2)3 for an arbitrary integer k > 1. Note that
this is equivalent to assuming that k3 + (k + 1)3 + (k + 2)3 = 9j for some integer j by the definition of
divides.

Inductive Step: Goal: Show 9 | (k + 1)3 + (k + 2)3 + (k + 3)3

(k + 1)3 + (k + 2)3 + (k + 3)3 = (k2 + 6k + 9)(k + 3) + (k + 1)3 + (k + 2)3 [expanding trinomial]
= (k3 + 6k2 + 9k + 3k2 + 18k + 27) + (k + 1)3 + (k + 2)3 [expanding binomial]
= 9k2 + 27k + 27 + k3 + (k + 1)3 + (k + 2)3 [adding like terms]
= 9k2 + 27k + 27 + 9j [by I.H.]
= 9(k2 + 3k + 3 + j) [factoring out 9]

Since k and j are integers, k2 + 3k + 3 + j is also an integer. Therefore, by the definition of divides,
9 | (k + 1)3 + (k + 2)3 + (k + 3)3, so P (k) → P (k + 1) for an arbitrary integer k > 1.

Conclusion: P (n) holds for all integers n > 1 by induction.
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1. Induction: Equality
For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn = 12 + 22 + · · ·+ n2.

Prove that for all n ∈ N, Sn = 1
6n(n+ 1)(2n+ 1).

Solution:
Let P(n) be the statement “Sn = 1

6n(n+ 1)(2n+ 1)” defined for all n ∈ N. We prove that P(n) is true for all
n ∈ N by induction on n.

Base Case: When n = 0, we know the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S0 = 0. Since 1

6(0)(0 + 1)((2)(0) + 1) = 0, we know that P(0) is
true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary k ∈ N.

Inductive Step:

Goal: Show P (k+1), i.e. show Sk+1 =
1
6(k+1)((k+1)+1)(2(k+1)+1)

Examining Sk+1, we see that

Sk+1 = 12 + 22 + · · ·+ k2 + (k + 1)2 = Sk + (k + 1)2.

By the inductive hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute and

rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Conclusion: P (n) holds for all integers n ≥ 0 by the principle of induction.
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2. Induction: Inequality
Prove by induction on n that for all integers n ≥ 0 the inequality (3 + π)n ≥ 3n + nπ3n−1 is true.
Solution:
Let P (n) be "(3 + π)n ≥ 3n + nπ3n−1". We will prove P (n) is true for all n ∈ N, by induction.

Base Case: (n = 0): (3 + π)0 = 1 and 30 + 0 · π · 3−1 = 1, since 1 ≥ 1, P (0) is true.

Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N.

Inductive Step:

Goal: Show P (k+1), i.e. show (3+π)k+1 ≥ 3k+1+(k+1)π3(k+1)−1 = 3k+1+(k+1)π3k

(3 + π)k+1 = (3 + π)k · (3 + π) (Factor out (3 + π))
≥ (3k + k3k−1π) · (3 + π) (By I.H., (3 + π) ≥ 0)
= 3 · 3k + 3kπ + 3k3k−1π + k3k−1π2 (Distributive property)
= 3k+1 + 3kπ + k3kπ + k3k−1π2 (Simplify)
= 3k+1 + (k + 1)3kπ + k3k−1π2 (Factor out (k + 1))
≥ 3k+1 + (k + 1)π3k (k3k−1π2 ≥ 0)

Conclusion: So by induction, P (n) is true for all n ∈ N.
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3. Induction: Another Inequality
Prove by induction on n that for all integers n ≥ 4 the inequality n! > 2n is true.
Solution:
Let P (n) be "n! > 2n". We will prove P (n) is true for all n ∈ N, n ≥ 4, by induction.

Base Case: (n = 4): 4! = 24 and 24 = 16, since 24 > 16, P (4) is true.

Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N, k ≥ 4.

Inductive Step:
Goal: Show P (k+1), i.e. show (k+1)! > 2k+1

(k + 1)! = k! · (k + 1)

> 2k · (k + 1) (By I.H., k! > 2k)
> 2k · 2 (Since k ≥ 4, so k + 1 ≥ 5 > 2)
= 2k+1

Conclusion: So by induction, P (n) is true for all n ∈ N, n ≥ 4.
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4. Strong Induction: Stamp Collection
A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth
of stamps for all n ≥ 10.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You can buy exactly n cents of stamps". We will prove P (n) is true for all integers
n ≥ 10 by strong induction.

Base Cases: (n = 10, 11, 12):

• n = 10: 10 cents of stamps can be made from two 5 cent stamps.
• n = 11: 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.
• n = 12: 12 cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 12, P(10) ∧P(11) ∧... ∧P(k) holds.

Inductive Step:

Goal: Show P (k+1), i.e. show that we can make k+1 cents in stamps.

We want to buy k + 1 cents in stamps. By the I.H., we can buy exactly (k + 1) − 3 = k − 2 cents in
stamps. Then, we can add another 3 cent stamp in order to buy k + 1 cents in stamps, so P(k + 1) is
true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−2),
and add 3 to achieve P(k + 1). Therefore we needed to be able to assume that k − 2 ≥ 10. Adding 2 to
both sides, we needed to be able to assume that k ≥ 12. So, we have to prove the base cases up to 12,
that is: 10, 11, 12.
Another way to think about this is that we had to use a fact from 3 steps back from k + 1 to k − 2 in
the IS, so we needed 3 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 10.
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5. Strong Induction: Functions
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 1 for n = 1
f(2) = 4 for n = 2
f(3) = 9 for n = 3
f(n) = f(n− 1)− f(n− 2) + f(n− 3) + 2(2n− 3) for n ≥ 4

Prove by strong induction that for all n ≥ 1, f(n) = n2.
Solution:
Let P(n) be defined as " f(n) = n2". We will prove P (n) is true for all integers n ≥ 1 by strong induction.

Base Cases: (n = 1, 2, 3):

• n = 1: f(1) = 1 = 12.
• n = 2: f(2) = 4 = 22.
• n = 3: f(3) = 9 = 32

So the base cases hold.

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 3, P(1) ∧... ∧P(k) hold.

Inductive Step:

Goal: Show P (k + 1), i.e. show that f(k + 1) = (k + 1)2.

f(k + 1) = f(k + 1− 1)− f(k + 1− 2) + f(k + 1− 3) + 2(2(k + 1)− 3) Definition of f
= f(k)− f(k − 1) + f(k − 2) + 2(2k − 1)

= k2 − (k − 1)2 + (k − 2)2 + 2(2k − 1) By IH
= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + 4k − 2

= (k2 − k2 + k2) + (2k − 4k + 4k) + (−1 + 4− 2)

= k2 + 2k + 1

= (k + 1)2

So P(k + 1) holds.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 1.
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6. Strong Induction: Collecting Candy
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n ≥ 18. Use strong induction on n to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.

Base Cases: (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7).

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 21, P(18) ∧... ∧P(k) hold.

Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k−3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that k − 3 ≥ 18. Adding 3 to
both sides, we needed to be able to assume that k ≥ 21. So, we have to prove the base cases up to 21,
that is: 18, 19, 20, 21.
Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k − 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 18.
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