CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop Solutions

0. Induction: Divides

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1 by induction.

Solution:

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n=2): $2^3 + (2+1)^3 + (2+2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2+1)^3 + (2+2)^3$, so P(2) holds.

Inductive Hypothesis: Assume that $9 \mid k^3 + (k+1)^3 + (k+2)^3$ for an arbitrary integer k > 1. Note that this is equivalent to assuming that $k^3 + (k+1)^3 + (k+2)^3 = 9j$ for some integer j by the definition of divides.

Inductive Step: Goal: Show $9 | (k+1)^3 + (k+2)^3 + (k+3)^3$

$$\begin{array}{ll} (k+1)^3 + (k+2)^3 + (k+3)^3 &= (k^2+6k+9)(k+3) + (k+1)^3 + (k+2)^3 & \text{[expanding trinomial]} \\ &= (k^3+6k^2+9k+3k^2+18k+27) + (k+1)^3 + (k+2)^3 & \text{[expanding binomial]} \\ &= 9k^2+27k+27+k^3+(k+1)^3+(k+2)^3 & \text{[adding like terms]} \\ &= 9k^2+27k+27+9j & \text{[by I.H.]} \\ &= 9(k^2+3k+3+j) & \text{[factoring out 9]} \end{array}$$

Since k and j are integers, $k^2+3k+3+j$ is also an integer. Therefore, by the definition of divides, $9 \mid (k+1)^3+(k+2)^3+(k+3)^3$, so $P(k)\to P(k+1)$ for an arbitrary integer k>1.

Conclusion: P(n) holds for all integers n > 1 by induction.

1. Induction: Equality

For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = 1^2 + 2^2 + \dots + n^2$$
.

Prove that for all $n \in \mathbb{N}$, $S_n = \frac{1}{6}n(n+1)(2n+1)$.

Solution:

Let P(n) be the statement " $S_n = \frac{1}{6}n(n+1)(2n+1)$ " defined for all $n \in \mathbb{N}$. We prove that P(n) is true for all $n \in \mathbb{N}$ by induction on n.

Base Case: When n=0, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0. Thus, $S_0=0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1)=0$, we know that P(0) is true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary $k \in \mathbb{N}$.

Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $S_{k+1} = \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$

Examining S_{k+1} , we see that

$$S_{k+1} = 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = S_k + (k+1)^2.$$

By the inductive hypothesis, we know that $S_k = \frac{1}{6}k(k+1)(2k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$S_{k+1} = S_k + (k+1)^2$$

$$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= (k+1)\left(\frac{1}{6}k(2k+1) + (k+1)\right)$$

$$= \frac{1}{6}(k+1)\left(k(2k+1) + 6(k+1)\right)$$

$$= \frac{1}{6}(k+1)\left(2k^2 + 7k + 6\right)$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

$$= \frac{1}{6}(k+1)((k+1) + 1)(2(k+1) + 1)$$

Thus, we can conclude that P(k+1) is true.

Conclusion: P(n) holds for all integers $n \ge 0$ by the principle of induction.

2. Induction: Inequality

Prove by induction on n that for all integers $n \ge 0$ the inequality $(3+\pi)^n \ge 3^n + n\pi 3^{n-1}$ is true. **Solution:**

Let P(n) be " $(3+\pi)^n \ge 3^n + n\pi 3^{n-1}$ ". We will prove P(n) is true for all $n \in \mathbb{N}$, by induction.

Base Case: (n = 0): $(3 + \pi)^0 = 1$ and $3^0 + 0 \cdot \pi \cdot 3^{-1} = 1$, since $1 \ge 1$, P(0) is true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \in \mathbb{N}$.

Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $(3+\pi)^{k+1} \geq 3^{k+1} + (k+1)\pi 3^{(k+1)-1} = 3^{k+1} + (k+1)\pi 3^k$

$$(3+\pi)^{k+1} = (3+\pi)^k \cdot (3+\pi) \qquad \qquad \text{(Factor out } (3+\pi))$$

$$\geq (3^k + k3^{k-1}\pi) \cdot (3+\pi) \qquad \qquad \text{(By I.H., } (3+\pi) \geq 0)$$

$$= 3 \cdot 3^k + 3^k\pi + 3k3^{k-1}\pi + k3^{k-1}\pi^2 \qquad \qquad \text{(Distributive property)}$$

$$= 3^{k+1} + 3^k\pi + k3^k\pi + k3^{k-1}\pi^2 \qquad \qquad \text{(Simplify)}$$

$$= 3^{k+1} + (k+1)3^k\pi + k3^{k-1}\pi^2 \qquad \qquad \text{(Factor out } (k+1))$$

$$\geq 3^{k+1} + (k+1)\pi 3^k \qquad \qquad (k3^{k-1}\pi^2 \geq 0)$$

Conclusion: So by induction, P(n) is true for all $n \in \mathbb{N}$.

3. Induction: Another Inequality

Prove by induction on n that for all integers $n \geq 4$ the inequality $n! > 2^n$ is true.

Solution:

Let P(n) be " $n! > 2^n$ ". We will prove P(n) is true for all $n \in \mathbb{N}$, $n \ge 4$, by induction.

Base Case: (n = 4): 4! = 24 and $2^4 = 16$, since 24 > 16, P(4) is true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \in \mathbb{N}$, $k \geq 4$.

Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show $(k+1)! > 2^{k+1}$

$$(k+1)! = k! \cdot (k+1)$$

$$> 2^k \cdot (k+1)$$
 (By I.H., $k! > 2^k$)
$$> 2^k \cdot 2$$
 (Since $k \ge 4$, so $k+1 \ge 5 > 2$)
$$= 2^{k+1}$$

Conclusion: So by induction, P(n) is true for all $n \in \mathbb{N}$, $n \ge 4$.

4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \ge 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let P(n) be defined as "You can buy exactly n cents of stamps". We will prove P(n) is true for all integers $n \ge 10$ by strong induction.

Base Cases: (n = 10, 11, 12):

- n=10: 10 cents of stamps can be made from two 5 cent stamps.
- n = 11: 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.
- n=12: 12 cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer $k \ge 12$, $P(10) \land P(11) \land ... \land P(k)$ holds.

Inductive Step:

Goal: Show P(k+1), i.e. show that we can make k+1 cents in stamps.

We want to buy k+1 cents in stamps. By the I.H., we can buy exactly (k+1)-3=k-2 cents in stamps. Then, we can add another 3 cent stamp in order to buy k+1 cents in stamps, so P(k+1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k-2), and add 3 to achieve P(k+1). Therefore we needed to be able to assume that $k-2 \geq 10$. Adding 2 to both sides, we needed to be able to assume that $k \geq 12$. So, we have to prove the base cases up to 12, that is: 10, 11, 12.

Another way to think about this is that we had to use a fact from 3 steps back from k+1 to k-2 in the IS, so we needed 3 base cases.

Conclusion: So by strong induction, P(n) is true for all integers $n \ge 10$.

5. Strong Induction: Functions

Consider the function f(n) defined for integers $n \ge 1$ as follows:

$$f(1) = 1 \text{ for } n = 1$$

$$f(2) = 4 \text{ for } n = 2$$

$$f(3) = 9 \text{ for } n = 3$$

$$f(n) = f(n-1) - f(n-2) + f(n-3) + 2(2n-3)$$
 for $n \ge 4$

Prove by strong induction that for all $n \ge 1$, $f(n) = n^2$.

Solution:

Let P(n) be defined as " $f(n) = n^2$ ". We will prove P(n) is true for all integers $n \ge 1$ by strong induction.

Base Cases: (n = 1, 2, 3):

•
$$n=1$$
: $f(1)=1=1^2$.

$$n=2: f(2)=4=2^2.$$

•
$$n = 3$$
: $f(3) = 9 = 3^2$

So the base cases hold.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 3$, $P(1) \wedge ... \wedge P(k)$ hold.

Inductive Step:

Goal: Show
$$P(k+1)$$
, i.e. show that $f(k+1) = (k+1)^2$.

$$\begin{split} f(k+1) &= f(k+1-1) - f(k+1-2) + f(k+1-3) + 2(2(k+1)-3) & \text{ Definition of f} \\ &= f(k) - f(k-1) + f(k-2) + 2(2k-1) \\ &= k^2 - (k-1)^2 + (k-2)^2 + 2(2k-1) & \text{By IH} \\ &= k^2 - (k^2 - 2k + 1) + (k^2 - 4k + 4) + 4k - 2 \\ &= (k^2 - k^2 + k^2) + (2k - 4k + 4k) + (-1 + 4 - 2) \\ &= k^2 + 2k + 1 \\ &= (k+1)^2 \end{split}$$

So P(k+1) holds.

Conclusion: So by strong induction, P(n) is true for all integers $n \ge 1$.

6. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy". For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that P(n) is true for any $n \ge 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers $n \ge 18$ by strong induction.

Base Cases: (n = 18, 19, 20, 21):

- n=18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18=2*7+1*4).
- n=19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19=1*7+3*4).
- n=20: 20 packs of candy can be made up of 5 packs of 4 (20=5*4).
- n=21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 * 7).

Inductive Hypothesis: Suppose for some arbitrary integer $k \ge 21$, $P(18) \land ... \land P(k)$ hold.

Inductive Step:

Goal: Show P(k+1), i.e. show that we can buy k+1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k-3 packs, so we can add another pack of 4 packs in order to buy k+1 packs of candy, so P(k+1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k-3), and add 4 to achieve P(k+1). Therefore we needed to be able to assume that $k-3 \geq 18$. Adding 3 to both sides, we needed to be able to assume that $k \geq 21$. So, we have to prove the base cases up to 21, that is: 18, 19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from k+1 to k-3 in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers $n \ge 18$.