CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop Solutions

0. Induction: Divides
Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1 by induction.

Solution:

Let P(n) be “9 | n® + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by induction.

Base Case (n =2): 22+ (2+1)3+(2+2)2 =8+274+64=99=9-11,50 9|23+ (2+1)3+ (2+2)3, so

P(2) holds.

Inductive Hypothesis: Assume that 9 | k® + (k + 1)3 + (k + 2)3 for an arbitrary integer k& > 1. Note that
this is equivalent to assuming that k3 + (k + 1)3 + (k + 2)3 = 95 for some integer j by the definition of

divides.

Inductive Step:

(k+17°+(k+2)°+(k+3)°= (k> +6k+9)(k+3)+ (k+1)°+ (k+2)°

Goal: Show 9 | (k+1)3 + (k+2)3 + (k +3)3

[expanding trinomial]

= (K® + 6Kk* + 9k + 3k* + 18k +27) + (k + 1)* + (k +2)® [expanding binomial]

=Ok? + 2Tk + 27T+ K3+ (k +1)3 + (k +2)3
= 9k? 4+ 27k + 274 9j
=9(k* + 3k + 3+ )

[adding like terms]
by 1.H]
[factoring out 9]

Since k and j are integers, k* + 3k + 3 4 j is also an integer. Therefore, by the definition of divides,

9| (k+1)2+ (k+2)3+ (k+3)3 so P(k) — P(k + 1) for an arbitrary integer k& > 1.

Conclusion: P(n) holds for all integers n > 1 by induction.



1. Induction: Equality

For any n € N, define S;, to be the sum of the squares of the first n positive integers, or

Sy =124224... 4 n?
Prove that for all n € N, S, = in(n+1)(2n + 1).
Solution:
Let P(n) be the statement “S,, = in(n+1)(2n+1)" defined for all n € N. We prove that P(n) is true for all
n € N by induction on n.

Base Case: When n = (0, we know the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, Sy = 0. Since £(0)(0 + 1)((2)(0) + 1) = 0, we know that P(0) is
true.

Inductive Hypothesis: Suppose that P(k) is true for some arbitrary k € N.

Inductive Step:

Goal: Show P(k+1), i.e. show Sy = §(k+1)((k+1)+1)(2(k+1)+1)

Examining Sj+1, we see that
Spr1=124+22 4+ k2 4+ (k+1)? = S, + (k+1)2

By the inductive hypothesis, we know that S = %k(k + 1)(2k 4+ 1). Therefore, we can substitute and
rewrite the expression as follows:

Skt = Sk + (k +1)?
_ ék;(k; +1)(2k+ 1)+ (k+1)°
=(k+1) <ék(2k +1) + (k+ 1))
. é(k +1) (k(2k + 1) + 6(k + 1))
- é(k-i- 1) (2k* + 7k + 6)
_ é(k +1)(k +2)(2k + 3)
_ é(k; +1)((k+1) + 1)k +1) +1)

Thus, we can conclude that P(k + 1) is true.

Conclusion: P(n) holds for all integers n > 0 by the principle of induction.



2. Induction: Inequality

Prove by induction on n that for all integers n > 0 the inequality (3 + )" > 3" + na3" ! is true.
Solution:

Let P(n) be "(3+ 7)™ > 3" + na3"1". We will prove P(n) is true for all n € N, by induction.

Base Case: (n =0): 3+ 7m)"=1and3°+0 -7-371=1,since 1 >1, P(0) is true.
Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer k € N.

Inductive Step:

Goal: Show P(k+1), i.e. show (3+m)F+t > 3k+1 4 (k4 1)73k+1 =1 = 3641 4 (k4 1)73"

B+ =@B+n)F 3+7) (Factor out (3 + )
> (38 + k3¥ 1) - (3+7) (By ILH., 3+7) >0
=3.3F 4+ 3Fr 4 3k3F1r 4 k3K 112 (Distributive property
=38 1 8Fr 4 k3P 4 k32 (Simplify
=38 (k + 1)3Fm 4 k38 1x? (Factor out (kK +1)
> 3" 4 (k+ 173" (k3k172 >0

Conclusion: So by induction, P(n) is true for all n € N.



3. Induction: Another Inequality

Prove by induction on n that for all integers n > 4 the inequality n! > 2™ is true.
Solution:

Let P(n) be "n! > 2™". We will prove P(n) is true for all n € N, n > 4, by induction.

Base Case: (n = 4): 4! = 24 and 2* = 16, since 24 > 16, P(4) is true.
Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer k € N, k > 4.

Inductive Step:

Goal: Show P(k+1), i.e. show (k+1)! > 2k+1

(k+1)l =k (k+1)

> 2k (k4 1) (By L.H., k! > 2F)
>2k.9 (Since k>4,s0k+1>5>2)
:2k+l

Conclusion: So by induction, P(n) is true for all n € N, n > 4.



4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth
of stamps for all n > 10.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.

Solution:

Let P(n) be defined as "You can buy exactly n cents of stamps". We will prove P(n) is true for all integers
n > 10 by strong induction.

Base Cases: (n = 10,11,12):

= n = 10: 10 cents of stamps can be made from two 5 cent stamps.
= n = 11: 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.

= n = 12: 12 cents of stamps can be made from four 3 cent stamps.
Inductive Hypothesis: Suppose for some arbitrary integer k > 12, P(10) AP(11) A... AP(k) holds.

Inductive Step:

Goal: Show P(k+1), i.e. show that we can make k+1 cents in stamps. ‘

We want to buy k + 1 cents in stamps. By the I.H., we can buy exactly (k+ 1) —3 = k — 2 cents in
stamps. Then, we can add another 3 cent stamp in order to buy k£ + 1 cents in stamps, so P(k + 1) is
true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k —2),
and add 3 to achieve P(k + 1). Therefore we needed to be able to assume that k¥ — 2 > 10. Adding 2 to

both sides, we needed to be able to assume that k£ > 12. So, we have to prove the base cases up to 12,
that is: 10,11,12.

Another way to think about this is that we had to use a fact from 3 steps back from k+ 1 to kK — 2 in
the IS, so we needed 3 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n > 10.



5. Strong Induction: Functions

Consider the function f(n) defined for integers n > 1 as follows:
fl)y=1forn=1

f(2)=4forn=2

fB)=9forn=3
fm)=fn=1)—fn—2)+ f(n —3)+2(2n —3) forn > 4

Prove by strong induction that for all n > 1, f(n) = n?.
Solution:
Let P(n) be defined as " f(n) = n2". We will prove P(n) is true for all integers n > 1 by strong induction.

Base Cases: (n =1,2,3):

»n=1: f(1)=1=12
= =2 f(2)=4=22
= n=23 f(3)=9=3

So the base cases hold.
Inductive Hypothesis: Suppose for some arbitrary integer & > 3, P(1) A... AP(k) hold.

Inductive Step:

Goal: Show P(k + 1), i.e. show that f(k+1) = (k+1)2

flk+1)=fk+1-1)—f(k+1-2)+ f(k+1-3)+22(k+1)—3) Definition of f
= f(k) — f(k—1)+ f(k—2)+2(2k — 1)
=k —(k—1)*+ (k—2)? +2(2k - 1) By IH
=k? — (k* =2k + 1) + (k* — 4k + 4) + 4k — 2
= (K- K+ k) + 2k — 4k 4+ 4k) + (-1 +4—-2)
=k +2k+1
= (k+1)?

So P(k + 1) holds.

Conclusion: So by strong induction, P(n) is true for all integers n > 1.



6. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n > 18. Use strong induction on 7 to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.

Solution:

Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers
n > 18 by strong induction.

Base Cases: (n = 18,19,20,21):

» n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 =27+ 1% 4).
» n =19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 =1% 7+ 3x4).
» n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5% 4).
» n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 =3 7).

Inductive Hypothesis: Suppose for some arbitrary integer k > 21, P(18) A... AP(k) hold.

Inductive Step:

Goal: Show P(k + 1), i.e. show that we can buy k£ + 1 packs of candy. ‘

We want to buy k+ 1 packs of candy. By the I.H., we can buy exactly k — 3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k — 3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that £ — 3 > 18. Adding 3 to
both sides, we needed to be able to assume that £ > 21. So, we have to prove the base cases up to 21,
that is: 18,19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from k+ 1 to kK — 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n > 18.



