Week 5 Workshop

Conceptual Review

(a) Set Definitions

Set Equality: $A=B:=\forall x(x \in A \leftrightarrow x \in B)$
Subset: $A \subseteq B:=\forall x(x \in A \rightarrow x \in B)$
Union: $A \cup B:=\{x: x \in A \vee x \in B\}$
Intersection: $A \cap B:=\{x: x \in A \wedge x \in B\}$
Set Difference: $A \backslash B=A-B:=\{x: x \in A \wedge x \notin B\}$
Set Complement: $\bar{A}=A^{C}:=\{x: x \notin A\}$
Powerset: $\mathcal{P}(A):=\{B: B \subseteq A\}$
Cartesian Product: $A \times B:=\{(a, b): a \in A, b \in B\}$
(b) How do we prove that for sets A and $B, A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.
(c) How do we prove that for sets A and $B, A=B$?

Solution:

Method 1: Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.
Method 2: Use a chain of logical equivalences.
(d) What does $\{x \in \mathbb{Z}: x>0\}$ mean? Note: this notation is called "set-builder" notation.

Solution:

The set of all positive integers.

1. Examples

(a) Prove that $A \cap B \subseteq A \cup B$.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$. Then by definition of union, $x \in A \cup B$.
(b) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$ with a chain of equivalences proof.

Solution:

Let x be arbitrary. Observe that:

$$
\begin{aligned}
x \in A \cap(A \cup B) & \equiv(x \in A) \wedge(x \in A \cup B) & & \text { Def of Intersection } \\
& \equiv(x \in A) \wedge((x \in A) \vee(x \in B)) & & \text { Def of Union } \\
& \equiv((x \in A) \wedge(x \in A)) \vee((x \in A) \wedge(x \in B)) & & \text { Distributivity } \\
& \equiv(x \in A) \vee((x \in A) \wedge(x \in B)) & & \text { Idempotency }
\end{aligned}
$$

$$
\begin{array}{ll}
\equiv(x \in A) \vee(x \in A \cap B) & \text { Def of Intersection } \\
\equiv x \in A \cup(A \cap B) & \text { Def of Union }
\end{array}
$$

Since x was arbitrary, we have shown $A \cap(A \cup B)=A \cup(A \cap B)$.

2. Set Operations

Let $A=\{1,2,5,6,8\}$ and $B=\{2,3,5\}$.
(a) What is the set $A \cap(B \cup\{2,8\})$?

Solution:

(b) What is the set $\{10\} \cup(A \backslash B)$?

Solution:

$\{1,6,8,10\}$
(c) What is the set $\mathcal{P}(B)$?

Solution:

$\{\{2,3,5\},\{2,3\},\{2,5\},\{3,5\},\{2\},\{3\},\{5\}, \emptyset\}$
(d) How many elements are in the set $A \times B$? List 3 of the elements.

Solution:

15 elements, for example $(1,2),(1,3),(1,5)$.

3. Set Equality Proof

(a) Write an English proof to show that $A \cap(A \cup B) \subseteq A$ for any sets A, B.

Solution:

Let x be an arbitrary member of $A \cap(A \cup B)$. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So certainly, $x \in A$. Since x was arbitrary, $A \cap(A \cup B) \subseteq A$.
(b) Write an English proof to show that $A \subseteq A \cap(A \cup B)$ for any sets A, B.

Solution:

Let $y \in A$ be arbitrary. So certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in A \cup B$. Since $y \in A$ and $y \in A \cup B$, by definition of intersection, $y \in A \cap(A \cup B)$. Since y was arbitrary, $A \subseteq A \cap(A \cup B)$.
(c) Combine part (a) and (b) to conclude that $A \cap(A \cup B)=A$ for any sets A, B.

Solution:

Since $A \cap(A \cup B) \subseteq A$ and $A \subseteq A \cap(A \cup B)$, we can deduce that $A \cap(A \cup B)=A$.
(d) Prove $A \cap(A \cup B)=A$ again, but using a chain of equivalences proof instead.

Solution:

Let x be arbitrary. Observe:

$$
\begin{aligned}
x \in A \cap(A \cup B) & \equiv(x \in A) \wedge(x \in A \cup B) & & \text { Def of Intersection } \\
& \equiv(x \in A) \wedge((x \in A) \vee(x \in B)) & & \text { Def of Union } \\
& \equiv x \in A & & \text { Absorption }
\end{aligned}
$$

Since x was arbitrary, we have shown $A \cap(A \cup B)=A$.

4. Subsets

Prove or disprove: for any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Solution:

Let A, B, C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Let x be an arbitrary element of A. Then, by definition of subset, $x \in B$, and by definition of subset again, $x \in C$. Since x was an arbitrary element of A, we see that all elements of A are in C, so by definition of subset, $A \subseteq C$. So, for any sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
5. $\cup \rightarrow \cap$?

Prove or disprove: for all sets A and $B, A \cup B \subseteq A \cap B$.

Solution:

We wish to disprove this claim via a counterexample. Choose $A=\{1\}, B=\varnothing$. Note that $A \cup B=\{1\} \cup \varnothing=$ $\{1\}$ by definition of set union. Note that $A \cap B=\{1\} \cap \varnothing=\varnothing$ by definition of set intersection. $\{1\} \nsubseteq \varnothing$, so the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it is not the case that $A \cup B \nsubseteq A \cap B$ for all sets A and B.

6. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq(A \cup B) \times(C \cup D)$.

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form $x=(y, z)$, where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$. Then by definition of union, $y \in(A \cup B)$. Similarly, since $z \in C$, certainly $z \in C$ or $z \in D$. Then by definition, $z \in(C \cup D)$. Since $x=(y, z)$, then $x \in(A \cup B) \times(C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq(A \cup B) \times(C \cup D)$.

7. Set Equality Proof

We want to prove that $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.
(a) First prove this with a chain of logical equivalences proof.

Solution:

Let x be arbitrary. Observe:

$$
\begin{aligned}
x \in A \backslash(B \cap C) & \equiv(x \in A) \wedge(x \notin B \cap C) & & \text { Def of Set Differen } \\
& \equiv(x \in A) \wedge \neg(x \in B \cap C) & & \text { Def of element } \\
& \equiv(x \in A) \wedge \neg((x \in B) \wedge(x \in C)) & & \text { Def of Intersection } \\
& \equiv(x \in A) \wedge(\neg(x \in B) \vee \neg(x \in C)) & & \text { DeMorgan's Law } \\
& \equiv(x \in A) \wedge((x \notin B) \vee(x \notin C)) & & \text { Def of element }
\end{aligned}
$$

$$
\begin{array}{ll}
\equiv((x \in A) \wedge(x \notin B)) \vee((x \in A) \wedge(x \notin C)) & \text { Distributivity } \\
\equiv(x \in A \backslash B) \vee(x \in A \backslash C) & \text { Def of Set Difference } \\
\equiv x \in(A \backslash B) \cup(A \backslash C) & \text { Def of Union }
\end{array}
$$

Since x was arbitrary, we have shown $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.
(b) Now prove this with an English proof that is made of two subset proofs.

Solution:

Let $x \in A \backslash(B \cap C)$ be arbitrary. Then by definition of set difference, $x \in A$ and $x \notin B \cap C$. Then by definition of intersection, $x \notin B$ or $x \notin C$. Thus (by distributive property of propositions) we have $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then by definition of set difference, $x \in(A \backslash B)$ or $x \in(A \backslash C)$. Then by definition of union, $x \in(A \backslash B) \cup(A \backslash C)$. Since x was arbitrary, we have shown $A \backslash(B \cap C) \subseteq(A \backslash B) \cup(A \backslash C)$.

Let $x \in(A \backslash B) \cup(A \backslash C)$ be arbitrary. Then by definition of union, $x \in(A \backslash B)$ or $x \in(A \backslash C)$. Then by definition of set difference, $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. Then (by distributive property of propositions) $x \in A$, and $x \notin B$ or $x \notin C$. Then by definition of intersection, $x \in A$ and $x \notin(B \cap C)$. Then by definition of set difference, $x \in A \backslash(B \cap C)$. Since x was arbitrary, we have shown that $(A \backslash B) \cup(A \backslash C) \subseteq A \backslash(B \cap C)$.

Since $A \backslash(B \cap C) \subseteq(A \backslash B) \cup(A \backslash C)$ and $(A \backslash B) \cup(A \backslash C) \subseteq A \backslash(B \cap C)$, we have shown $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.

8. Constructing Sets

Use set builder notation to construct the following sets. You may use arithmetic predicates $=,<,>, \leq, \geq, \neq$, and arithmetic operations $+, \cdot,-, \div$.

Recall that integers are the numbers $\{\ldots-2,-1,0,1,2 \ldots\}$, and are denote \mathbb{Z}.
(a) The set of even integers.

Solution:

$\{2 x: x \in \mathbb{Z}\}$ or $\{x: x=2 k, k \in \mathbb{Z}\}$ or $\{x \in \mathbb{Z}: 2 \mid x\}$
(b) The set of integers that are one more than a perfect square.

Solution:

$\left\{x^{2}+1: x \in \mathbb{Z}\right\}$
(c) The set of integers that are greater than 5 .

Solution:

$\{x \in \mathbb{Z}: x>5\}$

9. Making a Difference

Garrett and Shaoqi are working on their AI homework and tell you the following. Let G denote the set of Al homework questions that Garrett has not yet solved. Let S denote the set of AI homework questions that Shaoqi has not yet solved. Garrett and Shaoqi claim that $G \backslash S=S \backslash G$.

In what circumstance is this true? In what circumstance is it false? Can you justify this (formal proof not required)?

Solution:

This is only true in the case when $G=S$. In all other cases, $G \backslash S \neq S \backslash G$.
Justification:
When $G=S, G \backslash S=\emptyset$ and $S \backslash G=\emptyset$. So $G \backslash S \neq S \backslash G$ holds.
When $G \neq S$, then either there exists some element x such that $x \in G$ and $x \notin S$, or some element y such that $y \in S$ and $y \notin G$. Assume we are in the first case (the second case follows a similar argument). Then because $x \in G$ and $x \notin S, x$ will be in $G \backslash S$. However, since $x \notin S, x$ will not be in $S \backslash G$. Thus in this case, $G \backslash S \neq S \backslash G$.

