0. Notes on Conceptual Review

1. RegEx, CFGs, and DFAs

Let $\Sigma=\{0,1,2\}$. Consider the language "all strings with an even number of 2 's."
(a) Design a regular expression for this language..
(b) Design a CFG for this language.
(c) Design a DFA for this language.

2. Constructing Regular Expressions

For each of the following, construct a regular expression for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an even number of a 's.
(c) Strings from the language $\Sigma:=\{a, b\}^{*}$ with odd length.
(d) (Challenge) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

3. Context Free Grammars

Consider the following CFG which generates strings from the language $\mathrm{V}:=\{0,1,2,3,4\}^{*}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow 0 \mathbf{X} 4 \\
& \mathbf{X} \rightarrow 1 \mathbf{X} 3 \mid 2
\end{aligned}
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

4. Constructing CFGs

For each of the following, construct a CFG for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $\Sigma:=\{a, b\}^{*}$ with odd length.
(c) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.
(d) Strings from the language $\Sigma:=\{a, b\}^{*}$ with an equal number of a 's and b 's.

5. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $\Sigma=\{a, b\}$ with an even number of a 's or an odd number of b 's.
(c) Strings from the language $\Sigma=\{a, b\}$ with odd length.

6. Challenge: All the Machines!

Using the alphabet $\Sigma=\{0,1,2,3,4,5\}$, define the language L as follows. If x is a string from $\Sigma *$ with characters x_{0}, \ldots, x_{n}, then $x \in L$ iff: for every i between 0 and n, if x_{i} is an odd digit, then $x_{k}>x_{i}$ for every $k>i$. For example, if one of the digits is a 3 , ever digit after it must be a 4 or higher.
(a) List 3 strings in L and 3 strings from $\Sigma *$ not in L.
(b) Construct a regular expression for the language L.
(c) Construct a CFG for the language L.
(d) Construct a DFA for the language L.

