CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice midterm. You will not be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 90 points.

1. Predicate Translation [15 points]

Let the domain of discourse be novels, comic books, movies, and TV shows. Translate the following statements to predicate logic, using the following predicates:
$\operatorname{Novel}(x):=x$ is a novel
$\operatorname{Comic}(x):=x$ is a comic book
$\operatorname{Movie}(x):=x$ is a movie
$\operatorname{Show}(x):=x$ is a TV show
Adaptation $(x, y):=x$ is an adaptation of y
(a) (5 points) A novel cannot be adapted into both a movie and a TV show.
(b) (5 points) Every movie is an adaptation of a novel or a comic book.
(c) (5 points) Every novel has been adapted into exactly one movie.

2. Circuits [15 points]

The boolean function f takes in three boolean inputs x_{1}, x_{2}, x_{3}, and outputs $\neg\left(\left(x_{1} \oplus x_{2}\right) \wedge x_{3}\right)$.
Note: You may write your solutions using boolean algebra or propositional logic notation.
(a) (5 points) Draw a truth table for f.
(b) (5 points) Write f as a sum-of-products expression.
(c) (5 points) Write f as a products-of-sums expression.
3. Number Theory Proof [20 points]

Recall this definition of odd: $\operatorname{Odd}(x):=\exists y(x=2 y+1)$. Write an English proof to show that for all odd integers k, the statement $8 \mid k^{2}-1$ holds.

Hint: At some point in your proof, you'll need to show that for any integer $a, a(a+1)$ is even. When you reach this point, feel free to break your proof up into the case where a is even, and the case where a is odd.
4. Set Proof [20 points]

Suppose that for sets A, B, C, the facts $A \subseteq B$ and $B \subseteq C$ are given. Write an English proof to show that $B \times A \subseteq C \times C$.
5. Induction [20 points]

Prove by induction that $(1+\pi)^{n}>1+n \pi$ for all integers $n \geq 2$.

