CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop

0. Induction: Divides

Prove that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n>1$ by induction.

1. Induction: Equality

For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=1^{2}+2^{2}+\cdots+n^{2} .
$$

Prove that for all $n \in \mathbb{N}, S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

2. Induction: Inequality

Prove by induction on n that for all integers $n \geq 0$ the inequality $(3+\pi)^{n} \geq 3^{n}+n \pi 3^{n-1}$ is true.

3. Induction: Another Inequality

Prove by induction on n that for all integers $n \geq 4$ the inequality $n!>2^{n}$ is true.

4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \geq 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

5. Strong Induction: Functions

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

6. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

