CSE 390Z: Mathematics for Computation Workshop

Week 5 Workshop

0. Induction: Divides

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1 by induction.

1. Induction: Equality

For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or

$$S_n = 1^2 + 2^2 + \dots + n^2.$$

Prove that for all $n \in \mathbb{N}$, $S_n = \frac{1}{6}n(n+1)(2n+1)$.

2. Induction: Inequality

Prove by induction on n that for all integers $n \ge 0$ the inequality $(3 + \pi)^n \ge 3^n + n\pi 3^{n-1}$ is true.

3. Induction: Another Inequality

Prove by induction on n that for all integers $n \ge 4$ the inequality $n! > 2^n$ is true.

4. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \ge 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

5. Strong Induction: Functions

Consider the function f(n) defined for integers $n \ge 1$ as follows: f(1) = 1 for n = 1 f(2) = 4 for n = 2 f(3) = 9 for n = 3f(n) = f(n-1) - f(n-2) + f(n-3) + 2(2n-3) for $n \ge 4$

Prove by strong induction that for all $n \ge 1$, $f(n) = n^2$.

6. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy". For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that P(n) is true for any $n \ge 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.