Please submit a response to the following questions on Gradescope. We do not grade on accuracy, so please submit your best attempt. You may either typeset your responses or hand-write them. Note that hand-written solutions must be legible to be graded.

We have created this template if you choose to typeset with Latex. This guide has specific information about scanning and uploading pdf files to Gradescope.

0. Mod Madness
Prove that if \(n \mid m \), where \(n \) and \(m \) are integers greater than 1, and if \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers, then \(a \equiv b \pmod{n} \). Write an English proof of the statement.

Solution:
Let integers \(n > 1, m > 1 \) be arbitrary and integers \(a, b \) be arbitrary. Suppose \(n \mid m \) and \(a \equiv b \pmod{m} \). By definition of divides, we have \(m = kn \) for some integer \(k \). By definition of congruence, we have \(m \mid a - b \). By definition of divides, this means that \(a - b = mj \) for some integer \(j \). Combining the two equations, we see that \(a - b = (knj) = n(kj) \). By definition of divides, we have \(n \mid a - b \). By definition of congruence, we have \(a \equiv n \bmod{b} \). Since \(n, m, a, b \) were arbitrary, we have shown that if \(n \mid m \) and \(a \equiv b \pmod{m} \), then \(a \equiv b \pmod{n} \).

1. Video Solution
Watch this video on the solution after making an initial attempt. Then, answer the following questions.

(a) What is one thing you took away from the video solution?

(b) What topic from the quick check or lecture would you most like to review in workshop?