CSE 390Z: Mathematics of Computing Workshop

Week 9 Workshop Solutions

0. Conceptual Review

(a) Regular expression rules:

Basis: ϵ, \varnothing, a for $a \in \Sigma$
Recursive: If A, B are regular expressions, $(A \cup B), A B$, and A^{*} are regular expressions.
(b) Match the relation property to its definition:

Reflexive
Symmetric
Antisymmetric
Transitive

$$
\begin{array}{r}
\forall a, b((a, b) \in R \wedge(b, c) \in R) \rightarrow(a, c) \in R) \\
\forall a(a \in A \rightarrow(a, a) \in R) \\
\forall a, b((a, b) \in R \rightarrow(b, a) \in R) \\
\forall a, b(((a, b) \in R \wedge a \neq b) \rightarrow(b, a) \notin R) .
\end{array}
$$

Solution:

Reflexive: $\forall a(a \in A \rightarrow(a, a) \in R)$
Symmetric: $\forall a, b((a, b) \in R \rightarrow(b, a) \in R)$
Antisymmetric: $\forall a, b(((a, b) \in R \wedge a \neq b) \rightarrow(b, a) \notin R)$.
Transitive: $\forall a, b((a, b) \in R \wedge(b, c) \in R) \rightarrow(a, c) \in R)$

1. Regular Expressions Warmup

Consider the following Regular Expression (RegEx):

$$
1(45 \cup 54)^{\star} 1
$$

List 5 strings accepted by the RegEx and 5 strings from $T:=\{1,4,5\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words.

Solution:

Accepted:

- 1451
- 1541
- 145541
- 1454545451
- 11

Rejected:

- 1
- 1441
- 45
- 14451
- 111

This RegEx accepts exactly those strings that start and end with a 1 , and have zero or more pairs of 45 or 54 in the middle.

2. Context Free Grammars Warmup

Consider the following CFG which generates strings from the language $\mathrm{V}:=\{0,1,2,3,4\}^{*}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow 0 \mathbf{X} 4 \\
& \mathbf{X} \rightarrow 1 \mathbf{X} 3 \mid 2
\end{aligned}
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:

- 024
- 01234
- 0112334
- 011123334
- 01111233334

Rejected:

- ϵ
- 2
- 0244
- 011234
- 10234

This CFG is all strings of the form $01^{m} 23^{m} 4$, where $m \geq 0$. That is, it's all strings made of one 0 , followed by zero or more 1 's, followed by a 2 , followed by the same number of 3 's as 1 's, followed by one 4 .

3. Simplify the RegEx

Consider the following Regular Expression (RegEx):

$$
0^{\star}(0 \cup 1)^{\star}((01) \cup(11) \cup(10) \cup(00)) 1^{\star}(0 \cup 1)^{\star}
$$

List 3 strings accepted by the RegEx and 3 strings from $S:=\{0,1\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

Solution:

Accepted:

- 01
- 10
- 10100100101

Rejected:

- ϵ
- 0
- 1

This RegEx accepts all binary strings that are 2 or more characters long. A simpler RegEx for this is $(0 \cup 1)(0 \cup$ 1) $(0 \cup 1)^{\star}$.

4. Constructing RegExs and CFGs

For each of the following, construct a regular expression and CFG for the specified language.
(a) Strings from the language $S:=\{a\}^{*}$ with an even number of a 's.

Solution:

$$
\begin{gathered}
(a a)^{*} \\
\mathbf{S} \rightarrow a a \mathbf{S} \mid \varepsilon
\end{gathered}
$$

(b) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's.

Solution:

$$
\begin{gathered}
b^{*}\left(b^{*} a b^{*} a b^{*}\right)^{*} \\
\mathbf{S} \rightarrow b S|a S a S| \epsilon
\end{gathered}
$$

(c) Strings from the language $S:=\{a, b\}^{*}$ with odd length.

Solution:

$$
\begin{aligned}
& (a a \cup a b \cup b a \cup b b)^{*}(a \cup b) \\
& \mathbf{S} \rightarrow \mathbf{C S}|a| b \\
& \mathbf{C} \rightarrow a a \mathbf{C}|a b \mathbf{C}| b a \mathbf{C}|b b \mathbf{C}| \varepsilon
\end{aligned}
$$

(d) (Challenge) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

Solution:

$$
\begin{aligned}
& b^{*}\left(b^{*} a b^{*} a b^{*}\right)^{*} \cup\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*} b\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*} \\
& \mathbf{S} \rightarrow \mathbf{E} \mid \mathbf{O} b \mathbf{O} \\
& \mathbf{E} \rightarrow \mathbf{E E}|a \mathbf{E} a| b \mid \varepsilon \\
& \mathbf{O} \rightarrow \mathbf{O O}|b \mathbf{O} b| a \mid \varepsilon
\end{aligned}
$$

5. Relations Examples

(a) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.

Solution:

In R : $(0,0),(1,0),(-1,0)$
Not in $R:(2,0),(3,0),(17,5)$
(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

Solution:

- Reflexive: Yes. For any integer a, it is true that $a \leq a+1$. So $(a, a) \in R$.
- Symmetric: No. For example, $(0,20) \in R$ but $(20,0) \notin R$.
- Antisymmetric: No. For example $(0,1) \in R$ and $(1,0) \in R$.
- Transitive: No. For example $(2,1) \in R$ and $(1,0) \in R$, but $(2,0) \notin R$.

6. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.
(a) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

Solution:

False. Let $R=\{(1,2)\}, S=\{(2,1)\}$. By definition, R and S are transitive. By definition of union, $R \cup S=\{(1,2),(2,1)\}$. However, if $R \cup S$ was transitive, we would require $(1,1)$ to be in $R \cup S$, because $(1,2)$ and $(2,1)$ is in $R \cup S$. However, this is not the case. Therefore the claim is false.
(b) Prove or disprove: If R is symmetric, \bar{R} (the complement of R) is symmetric.

Solution:

True. Since R is symmetric, we know the following.

$$
\forall a \forall b[(a, b) \in R \rightarrow(b, a) \in R]
$$

Taking the contrapositive, this is equivalent to:

$$
\forall a \forall b[(b, a) \notin R \rightarrow(a, b) \notin R]
$$

By the definition of complement, this is equivalent to:

$$
\forall a \forall b[(b, a) \in \bar{R} \rightarrow(a, b) \in \bar{R}]
$$

This is the definition of \bar{R} being symmetric.

7. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.

Solution:

(b) Strings from the language $\Sigma=\{a, b\}$ with odd length.

Solution:

(c) Strings from the language $\Sigma=\{a, b\}$ with an even number of a 's or an odd number of b 's.

Solution:

