
CSE 390Z: Mathematics for Computation Workshop
Week 7 Workshop Solutions

0. Complete the Induction Proof
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 1 for n = 1
f(2) = 4 for n = 2
f(3) = 9 for n = 3
f(n) = f(n− 1)− f(n− 2) + f(n− 3) + 2(2n− 3) for n ≥ 4

Prove by strong induction that for all n ≥ 1, f(n) = n2.

Complete the induction proof below:

Solution:
Let P(n) be defined as " f(n) = n2". We will prove P (n) is true for all integers n ≥ 1 by strong induction.
(n = 1, 2, 3):

• n = 1: f(1) = 1 = 12.

• n = 2: f(2) = 4 = 22.

• n = 3: f(3) = 9 = 32

So the base cases hold.
Suppose for some arbitrary integer k ≥ 3, P(1) ∧ ... ∧P(k) hold.

Goal: Show P (k + 1), i.e. show that f(k + 1) = (k + 1)2.

f(k + 1) = f(k + 1− 1)− f(k + 1− 2) + f(k + 1− 3) + 2(2(k + 1)− 3) Definition of f
= f(k)− f(k − 1) + f(k − 2) + 2(2k − 1)

= k2 − (k − 1)2 + (k − 2)2 + 2(2k − 1) By IH
= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + 4k − 2

= (k2 − k2 + k2) + (2k − 4k + 4k) + (−1 + 4− 2)

= k2 + 2k + 1

= (k + 1)2

So P(k + 1) holds.
So by strong induction, P(n) is true for all integers n ≥ 1.
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1. Induction: Another Inequality
Prove by induction on n that for all integers n ≥ 4 the inequality n! > 2n is true.
Solution:
Let P (n) be "n! > 2n". We will prove P (n) is true for all n ∈ N, n ≥ 4, by induction.

Base Case: (n = 4): 4! = 24 and 24 = 16, since 24 > 16, P (4) is true.

Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N, k ≥ 4.

Inductive Step:
Goal: Show P (k+1), i.e. show (k+1)! > 2k+1

(k + 1)! = k! · (k + 1)

> 2k · (k + 1) (By I.H., k! > 2k)
> 2k · 2 (Since k ≥ 4, so k + 1 ≥ 5 > 2)
= 2k+1

Conclusion: So by induction, P (n) is true for all n ∈ N, n ≥ 4.
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2. Induction: Divides
Prove that 9 | (n3 + (n+ 1)3 + (n+ 2)3) for all n > 1 by induction.
Solution:
Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23 + (2 + 1)3 + (2 + 2)3 = 8 + 27 + 64 = 99 = 9 · 11, so 9 | 23 + (2 + 1)3 + (2 + 2)3, so
P (2) holds.

Inductive Hypothesis: Assume that 9 | k3 + (k + 1)3 + (k + 2)3 for an arbitrary integer k > 1. Note that
this is equivalent to assuming that k3 + (k + 1)3 + (k + 2)3 = 9j for some integer j by the definition of
divides.

Inductive Step: Goal: Show 9 | (k + 1)3 + (k + 2)3 + (k + 3)3

(k + 1)3 + (k + 2)3 + (k + 3)3 = (k2 + 6k + 9)(k + 3) + (k + 1)3 + (k + 2)3 [expanding trinomial]
= (k3 + 6k2 + 9k + 3k2 + 18k + 27) + (k + 1)3 + (k + 2)3 [expanding binomial]
= 9k2 + 27k + 27 + k3 + (k + 1)3 + (k + 2)3 [adding like terms]
= 9k2 + 27k + 27 + 9j [by I.H.]
= 9(k2 + 3k + 3 + j) [factoring out 9]

Since k and j are integers, k2 + 3k + 3 + j is also an integer. Therefore, by the definition of divides,
9 | (k + 1)3 + (k + 2)3 + (k + 3)3, so P (k) → P (k + 1) for an arbitrary integer k > 1.

Conclusion: P (n) holds for all integers n > 1 by induction.
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3. Strong Induction: Stamp Collection
A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth
of stamps for all n ≥ 10.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You can buy exactly n cents of stamps". We will prove P (n) is true for all integers
n ≥ 10 by strong induction.

Base Cases: (n = 10, 11, 12):

• n = 10: 10 cents of stamps can be made from two 5 cent stamps.
• n = 11: 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.
• n = 12: 12 cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 12, P(10) ∧P(11) ∧... ∧P(k) holds.

Inductive Step:

Goal: Show P (k+1), i.e. show that we can make k+1 cents in stamps.

We want to buy k + 1 cents in stamps. By the I.H., we can buy exactly (k + 1) − 3 = k − 2 cents in
stamps. Then, we can add another 3 cent stamp in order to buy k + 1 cents in stamps, so P(k + 1) is
true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−2),
and add 3 to achieve P(k + 1). Therefore we needed to be able to assume that k − 2 ≥ 10. Adding 2 to
both sides, we needed to be able to assume that k ≥ 12. So, we have to prove the base cases up to 12,
that is: 10, 11, 12.
Another way to think about this is that we had to use a fact from 3 steps back from k + 1 to k − 2 in
the IS, so we needed 3 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 10.
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4. Strong Induction: Functions
Let a function f be defined by:

• f(1) = 0

• f(2) = 12

• f(n) = 4 · f(n− 1)− 3 · f(n− 2) for n ≥ 3

Prove that f(n) = 2 · 3n − 6 for any positive integer n.

Solution:

Let P (n) be the claim that f(n) = 2 · 3n − 6. We will prove P (n) true for all integers n ≥ 1 using strong
induction.
Base Case:

• For n = 1, 2 · 31 − 6 = 2 · 3− 6 = 6− 6 = 0 = f(1), so P (1) holds.

• For n = 2, 2 · 32 − 6 = 2 · 9− 6 = 18− 6 = 12 = f(2), so P (2) holds.

Inductive Hypothesis: Suppose that P (j) holds all 1 ≤ j ≤ k for some arbitrary positive integer k ≥ 2.
Inductive Step:

Goal: Show P (k+1), i.e. f(k+1) = 2·3k+1−6.

f(k + 1) = 4 · f((k + 1)− 1)− 3 · f((k + 1)− 2) Definition of f
= 4 · f(k)− 3 · f(k − 1)

= 4 · (2 · 3k − 6)− 3 · (2 · 3k−1 − 6) I.H.
= 8 · 3k − 24− 6 · 3k−1 + 18

= 8 · 3k − 6 · 3k−1 − 6

= 8 · 3k − 2 · 3k − 6

= 6 · 3k − 6

= 2 · 3k+1 − 6

Thus, P (k + 1) holds.
Conclusion: Therefore, by the principles of strong induction, P (n) holds for all positive integers n.
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5. Strong Induction: Collecting Candy
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n ≥ 18. Use strong induction on n to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.

Base Cases: (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7).

Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 21, P(18) ∧... ∧P(k) hold.

Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k−3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that k − 3 ≥ 18. Adding 3 to
both sides, we needed to be able to assume that k ≥ 21. So, we have to prove the base cases up to 21,
that is: 18, 19, 20, 21.
Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k − 3 in
the IS, so we needed 4 base cases.

Conclusion: So by strong induction, P(n) is true for all integers n ≥ 18.
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6. Structural Induction: a’s and b’s
Define a set S of character strings over the alphabet {a, b} by:

• a and ab are in S

• If x ∈ S and y ∈ S, then axb ∈ S and xy ∈ S

Prove by induction that every string in S has at least as many a’s as it does b’s.

Solution:

Let P (s) be the claim that a string has at least many a’s as it does b’s. We will prove P (s) true for all strings
s ∈ S using structural induction.
Base Case:

• Consider s = a: there is one a and zero b’s, so P (a) holds.

• Consider s = ab: there is one a and one b, so P (ab) holds.

Let t be an arbitrary string in S that is not one of the base cases. Then, by the exclusion rule, it must be that
t = axb or t = xy for some x, y ∈ S.
Inductive Hypothesis: Suppose P (x) and P (y) hold.
Inductive Step:

Goal: Prove P (axb) and P (xy)

First, we consider axb. We are adding one a and one b to x. Per the IH, x must have at least as many a’s as
it does b’s. Therefore, since adding one a and one b does not change the difference in the number of a’s and
b’s, axb must have at least many a’s as it does b’s. Thus, P (axb) holds.
Second, we consider xy. Let m,n represent the number of a’s in x and y respectively. Similarly, let i, j represent
the number of b’s in x and y. Per the IH, we know that m ≥ i and n ≥ j. Adding these together, we see
m + n ≥ i + j. Therefore, xy must have at least as many a’s (i.e., m + n a’s) as it does b’s (i.e., i + j b’s).
Thus, P (xy) holds.
So, P (t) holds in both cases. Conclusion: Therefore, per the principles of structural induction, P (s) holds for
all strings in S.
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7. Structural Induction: Divisible by 4
Define a set B of numbers by:

• 4 and 12 are in B

• If x ∈ B and y ∈ B, then x+ y ∈ B and x− y ∈ B

Prove by induction that every number in B is divisible by 4.

Solution:

Let P (b) be the claim that 4 | b. We will prove P true for all numbers b ∈ B by structural induction.
Base Case:

• 4 | 4 is trivially true, so P (4) holds.

• 12 = 3 · 4, so 4 | 12 and P (12) holds.

Let t be an arbitrary element from B that is not from the base cases. Then, by the exclusion rule, it must be
that t = x+ y or t = x− y for some x, y ∈ B.
Inductive Hypothesis: Suppose P (x) and P (y).
Inductive Step:

Goal: Prove P (x+y) and P (x−y)

Per the IH, 4 | x and 4 | y. By the definition of divides, x = 4k and y = 4j for some integers k, j. Then,
x + y = 4k + 4j = 4(k + j). Since integers are closed under addition, k + j is an integer, so 4 | x + y and
P (x+ y) holds.
Similarly, x − y = 4k − 4j = 4(k − j) = 4(k + (−1 · j)). Since integers are closed under addition and
multiplication, and −1 is an integer, we see that k − j must be an integer. Therefore, by the definition of
divides, 4 | x− y and P (x− y) holds.
So, P (t) holds in both cases.
Conclusion: Therefore, P (b) holds for all numbers b ∈ B.
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