0. Complete the Induction Proof

Consider the function \(f(n) \) defined for integers \(n \geq 1 \) as follows:

\[
\begin{align*}
 f(1) &= 1 \\
 f(2) &= 4 \\
 f(3) &= 9 \\
 f(n) &= f(n-1) - f(n-2) + f(n-3) + 2(2n-3) & \text{for } n \geq 4
\end{align*}
\]

Prove by strong induction that for all \(n \geq 1 \), \(f(n) = n^2 \).

Complete the induction proof below:

Solution:

Let \(P(n) \) be defined as " \(f(n) = n^2 \)". We will prove \(P(n) \) is true for all integers \(n \geq 1 \) by strong induction.

\(n = 1, 2, 3 \):

- \(n = 1 \): \(f(1) = 1 = 1^2 \).
- \(n = 2 \): \(f(2) = 4 = 2^2 \).
- \(n = 3 \): \(f(3) = 9 = 3^2 \)

So the base cases hold.

Suppose for some arbitrary integer \(k \geq 3 \), \(P(1) \land \ldots \land P(k) \) hold.

\[\text{Goal: Show } P(k+1), \text{ i.e. show that } f(k+1) = (k+1)^2. \]

\[
\begin{align*}
 f(k+1) &= f(k+1-1) - f(k+1-2) + f(k+1-3) + 2(2(k+1)-3) & \text{Definition of } f \\
 &= f(k) - f(k-1) + f(k-2) + 2(2k-1) \\
 &= k^2 - (k-1)^2 + (k-2)^2 + 2(2k-1) & \text{By IH} \\
 &= k^2 - k^2 + k^2 + (k^2 - 4k + 4) + 4k - 2 \\
 &= (k^2 - k^2 + k^2) + (2k - 4k + 4k) + (-1 + 4 - 2) \\
 &= k^2 + 2k + 1 \\
 &= (k+1)^2
\end{align*}
\]

So \(P(k+1) \) holds.

So by strong induction, \(P(n) \) is true for all integers \(n \geq 1 \).
1. Induction: Another Inequality

Prove by induction on \(n \) that for all integers \(n \geq 4 \) the inequality \(n! > 2^n \) is true.

Solution:

Let \(P(n) \) be "\(n! > 2^n \)." We will prove \(P(n) \) is true for all \(n \in \mathbb{N}, n \geq 4 \), by induction.

Base Case: \(n = 4 \): \(4! = 24 \) and \(2^4 = 16 \), since \(24 > 16 \), \(P(4) \) is true.

Inductive Hypothesis: Suppose that \(P(k) \) is true for some arbitrary integer \(k \in \mathbb{N}, k \geq 4 \).

Inductive Step:

<table>
<thead>
<tr>
<th>Goal: Show (P(k + 1)), i.e. show ((k + 1)! > 2^{k+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((k + 1)! = k! \cdot (k + 1))</td>
</tr>
<tr>
<td>(> 2^k \cdot (k + 1)) (By I.H., (k! > 2^k))</td>
</tr>
<tr>
<td>(> 2^k \cdot 2) (Since (k \geq 4), so (k + 1 \geq 5 > 2))</td>
</tr>
<tr>
<td>(= 2^{k+1})</td>
</tr>
</tbody>
</table>

Conclusion: So by induction, \(P(n) \) is true for all \(n \in \mathbb{N}, n \geq 4 \).
2. Induction: Divides

Prove that \(9 \mid (n^3 + (n + 1)^3 + (n + 2)^3)\) for all \(n > 1\) by induction.

Solution:

Let \(P(n)\) be “\(9 \mid n^3 + (n + 1)^3 + (n + 2)^3\)”. We will prove \(P(n)\) for all integers \(n > 1\) by induction.

Base Case \((n = 2)\): \(2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11\), so \(9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3\), so \(P(2)\) holds.

Inductive Hypothesis: Assume that \(9 \mid k^3 + (k + 1)^3 + (k + 2)^3\) for an arbitrary integer \(k > 1\). Note that this is equivalent to assuming that \(k^3 + (k + 1)^3 + (k + 2)^3 = 9j\) for some integer \(j\) by the definition of divides.

Inductive Step: \(\boxed{\text{Goal: Show } 9 \mid (k + 1)^3 + (k + 2)^3 + (k + 3)^3}\)

\[
(k + 1)^3 + (k + 2)^3 + (k + 3)^3 = (k^2 + 6k + 9)(k + 3) + (k + 1)^3 + (k + 2)^3 \\
= (k^3 + 6k^2 + 9k + 3k^2 + 18k + 27) + (k + 1)^3 + (k + 2)^3 \\
= 9k^2 + 27k + 27 + k^3 + (k + 1)^3 + (k + 2)^3 \\
= 9k^2 + 27k + 27 + 9j \\
= 9(k^2 + 3k + 3 + j) \\
= 9(k^2 + 3k + 3 + j) \\
\]

Since \(k\) and \(j\) are integers, \(k^2 + 3k + 3 + j\) is also an integer. Therefore, by the definition of divides, \(9 \mid (k + 1)^3 + (k + 2)^3 + (k + 3)^3\), so \(P(k) \rightarrow P(k + 1)\) for an arbitrary integer \(k > 1\).

Conclusion: \(P(n)\) holds for all integers \(n > 1\) by induction.
3. **Strong Induction: Stamp Collection**

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly \(n \) cents worth of stamps for all \(n \geq 10 \).

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let \(P(n) \) be defined as "You can buy exactly \(n \) cents of stamps". We will prove \(P(n) \) is true for all integers \(n \geq 10 \) by strong induction.

Base Cases: \((n = 10, 11, 12) \):

- \(n = 10 \): 10 cents of stamps can be made from two 5 cent stamps.
- \(n = 11 \): 11 cents of stamps can be made from one 5 cent and two 3 cent stamps.
- \(n = 12 \): 12 cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer \(k \geq 12 \), \(P(10) \land P(11) \land ... \land P(k) \) holds.

Inductive Step:

Goal: Show \(P(k+1) \), i.e. show that we can make \(k+1 \) cents in stamps.

We want to buy \(k + 1 \) cents in stamps. By the I.H., we can buy exactly \((k + 1) - 3 = k - 2 \) cents in stamps. Then, we can add another 3 cent stamp in order to buy \(k + 1 \) cents in stamps, so \(P(k+1) \) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume \(P(k-2) \), and add 3 to achieve \(P(k+1) \). Therefore we needed to be able to assume that \(k - 2 \geq 10 \). Adding 2 to both sides, we needed to be able to assume that \(k \geq 12 \). So, we have to prove the base cases up to 12, that is: 10, 11, 12.

Another way to think about this is that we had to use a fact from 3 steps back from \(k + 1 \) to \(k - 2 \) in the IS, so we needed 3 base cases.

Conclusion: So by strong induction, \(P(n) \) is true for all integers \(n \geq 10 \).
4. Strong Induction: Functions
Let a function f be defined by:

- $f(1) = 0$
- $f(2) = 12$
- $f(n) = 4 \cdot f(n - 1) - 3 \cdot f(n - 2)$ for $n \geq 3$

Prove that $f(n) = 2 \cdot 3^n - 6$ for any positive integer n.

Solution:

Let $P(n)$ be the claim that $f(n) = 2 \cdot 3^n - 6$. We will prove $P(n)$ true for all integers $n \geq 1$ using strong induction.

Base Case:

- For $n = 1$, $2 \cdot 3^1 - 6 = 2 \cdot 3 - 6 = 6 - 6 = 0 = f(1)$, so $P(1)$ holds.
- For $n = 2$, $2 \cdot 3^2 - 6 = 2 \cdot 9 - 6 = 18 - 6 = 12 = f(2)$, so $P(2)$ holds.

Inductive Hypothesis: Suppose that $P(j)$ holds all $1 \leq j \leq k$ for some arbitrary positive integer $k \geq 2$.

Inductive Step:

Goal: Show $P(k+1)$, i.e. $f(k+1) = 2 \cdot 3^{k+1} - 6$.

\[
\begin{align*}
 f(k + 1) & = 4 \cdot f((k + 1) - 1) - 3 \cdot f((k + 1) - 2) & \text{Definition of } f \\
 & = 4 \cdot f(k) - 3 \cdot f(k - 1) \\
 & = 4 \cdot (2 \cdot 3^k - 6) - 3 \cdot (2 \cdot 3^{k-1} - 6) & \text{I.H.} \\
 & = 8 \cdot 3^k - 24 - 6 \cdot 3^{k-1} + 18 \\
 & = 8 \cdot 3^k - 6 \cdot 3^{k-1} - 6 \\
 & = 8 \cdot 3^k - 2 \cdot 3^k - 6 \\
 & = 6 \cdot 3^k - 6 \\
 & = 2 \cdot 3^{k+1} - 6 \\
\end{align*}
\]

Thus, $P(k+1)$ holds.

Conclusion: Therefore, by the principles of strong induction, $P(n)$ holds for all positive integers n.

5. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let \(P(n) \) be defined as "You are able to buy \(n \) packs of candy". For example, \(P(3) \) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that \(P(n) \) is true for any \(n \geq 18 \). Use strong induction on \(n \) to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let \(P(n) \) be defined as "You are able to buy \(n \) packs of candy". We will prove \(P(n) \) is true for all integers \(n \geq 18 \) by strong induction.

Base Cases: \(n = 18, 19, 20, 21 \):

- \(n = 18 \): 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (\(18 = 2 \times 7 + 1 \times 4 \)).
- \(n = 19 \): 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (\(19 = 1 \times 7 + 3 \times 4 \)).
- \(n = 20 \): 20 packs of candy can be made up of 5 packs of 4 (\(20 = 5 \times 4 \)).
- \(n = 21 \): 21 packs of candy can be made up of 3 packs of 7 (\(21 = 3 \times 7 \)).

Inductive Hypothesis: Suppose for some arbitrary integer \(k \geq 21 \), \(P(18) \land \ldots \land P(k) \) hold.

Inductive Step:

Goal: Show \(P(k + 1) \), i.e. show that we can buy \(k + 1 \) packs of candy.

We want to buy \(k + 1 \) packs of candy. By the I.H., we can buy exactly \(k - 3 \) packs, so we can add another pack of 4 packs in order to buy \(k + 1 \) packs of candy, so \(P(k + 1) \) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume \(P(k - 3) \), and add 4 to achieve \(P(k + 1) \). Therefore we needed to be able to assume that \(k - 3 \geq 18 \). Adding 3 to both sides, we needed to be able to assume that \(k \geq 21 \). So, we have to prove the base cases up to 21, that is: 18, 19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from \(k + 1 \) to \(k - 3 \) in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, \(P(n) \) is true for all integers \(n \geq 18 \).
6. Structural Induction: a’s and b’s

Define a set S of character strings over the alphabet $\{a, b\}$ by:

- a and ab are in S
- If $x \in S$ and $y \in S$, then $axb \in S$ and $xy \in S$

Prove by induction that every string in S has at least as many a’s as it does b’s.

Solution:

Let $P(s)$ be the claim that a string has at least many a’s as it does b’s. We will prove $P(s)$ true for all strings $s \in S$ using structural induction.

Base Case:

- Consider $s = a$: there is one a and zero b’s, so $P(a)$ holds.
- Consider $s = ab$: there is one a and one b, so $P(ab)$ holds.

Let t be an arbitrary string in S that is not one of the base cases. Then, by the exclusion rule, it must be that $t = axb$ or $t = xy$ for some $x, y \in S$.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ hold.

Inductive Step:

Goal: Prove $P(axb)$ and $P(xy)$

First, we consider axb. We are adding one a and one b to x. Per the IH, x must have at least as many a’s as it does b’s. Therefore, since adding one a and one b does not change the difference in the number of a’s and b’s, axb must have at least many a’s as it does b’s. Thus, $P(axb)$ holds.

Second, we consider xy. Let m, n represent the number of a’s in x and y respectively. Similarly, let i, j represent the number of b’s in x and y. Per the IH, we know that $m \geq i$ and $n \geq j$. Adding these together, we see $m + n \geq i + j$. Therefore, xy must have at least as many a’s (i.e., $m + n$ a’s) as it does b’s (i.e., $i + j$ b’s). Thus, $P(xy)$ holds.

So, $P(t)$ holds in both cases. **Conclusion:** Therefore, per the principles of structural induction, $P(s)$ holds for all strings in S.

7
7. Structural Induction: Divisible by 4

Define a set \mathcal{B} of numbers by:

- 4 and 12 are in \mathcal{B}
- If $x \in \mathcal{B}$ and $y \in \mathcal{B}$, then $x + y \in \mathcal{B}$ and $x - y \in \mathcal{B}$

Prove by induction that every number in \mathcal{B} is divisible by 4.

Solution:

Let $P(b)$ be the claim that $4 \mid b$. We will prove P true for all numbers $b \in \mathcal{B}$ by structural induction.

Base Case:

- $4 \mid 4$ is trivially true, so $P(4)$ holds.
- $12 = 3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Let t be an arbitrary element from \mathcal{B} that is not from the base cases. Then, by the exclusion rule, it must be that $t = x + y$ or $t = x - y$ for some $x, y \in \mathcal{B}$.

Inductive Hypothesis: Suppose $P(x)$ and $P(y)$.

Inductive Step:

Goal: Prove $P(x+y)$ and $P(x-y)$

Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x = 4k$ and $y = 4j$ for some integers k, j. Then, $x + y = 4k + 4j = 4(k + j)$. Since integers are closed under addition, $k + j$ is an integer, so $4 \mid x + y$ and $P(x+y)$ holds.

Similarly, $x - y = 4k - 4j = 4(k - j) = 4(k + (-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that $k - j$ must be an integer. Therefore, by the definition of divides, $4 \mid x - y$ and $P(x - y)$ holds.

So, $P(t)$ holds in both cases.

Conclusion: Therefore, $P(b)$ holds for all numbers $b \in \mathcal{B}$.