CSE 390Z: Mathematics for Computation Workshop

Week 7 Workshop Solutions

0. Complete the Induction Proof

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$

Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

Complete the induction proof below:

Solution:

Let $\mathrm{P}(n)$ be defined as " $f(n)=n^{2 "}$. We will prove $P(n)$ is true for all integers $n \geq 1$ by strong induction. ($n=1,2,3$):

- $n=1: ~ f(1)=1=1^{2}$.
- $n=2: f(2)=4=2^{2}$.
- $n=3: f(3)=9=3^{2}$

So the base cases hold.
Suppose for some arbitrary integer $k \geq 3, \mathrm{P}(1) \wedge \ldots \wedge \mathrm{P}(k)$ hold.

Goal: Show $P(k+1)$, i.e. show that $f(k+1)=(k+1)^{2}$.

$$
\begin{array}{rlrl}
f(k+1) & =f(k+1-1)-f(k+1-2)+f(k+1-3)+2(2(k+1)-3) & & \text { Definition of } \mathrm{f} \\
& =f(k)-f(k-1)+f(k-2)+2(2 k-1) & & \text { By IH } \\
& =k^{2}-(k-1)^{2}+(k-2)^{2}+2(2 k-1) & & \\
& =k^{2}-\left(k^{2}-2 k+1\right)+\left(k^{2}-4 k+4\right)+4 k-2 & \\
& =\left(k^{2}-k^{2}+k^{2}\right)+(2 k-4 k+4 k)+(-1+4-2) & & \\
& =k^{2}+2 k+1 & & \\
& =(k+1)^{2} & &
\end{array}
$$

So $\mathrm{P}(k+1)$ holds.
So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 1$.

1. Induction: Another Inequality

Prove by induction on n that for all integers $n \geq 4$ the inequality $n!>2^{n}$ is true.
Solution:
Let $P(n)$ be " $n!>2^{n "}$. We will prove $P(n)$ is true for all $n \in \mathbb{N}, n \geq 4$, by induction.

Base Case: $(\mathrm{n}=4): 4!=24$ and $2^{4}=16$, since $24>16, P(4)$ is true.
Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \in \mathbb{N}, k \geq 4$.
Inductive Step:

$$
\text { Goal: Show } P(k+1) \text {, i.e. show }(k+1)!>2^{k+1}
$$

$$
\begin{aligned}
(k+1)! & =k!\cdot(k+1) \\
& >2^{k} \cdot(k+1) \\
& >2^{k} \cdot 2 \\
& =2^{k+1}
\end{aligned}
$$

Conclusion: So by induction, $P(n)$ is true for all $n \in \mathbb{N}, n \geq 4$.

2. Induction: Divides

Prove that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n>1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ ". We will prove $P(n)$ for all integers $n>1$ by induction.
Base Case $(n=2): 2^{3}+(2+1)^{3}+(2+2)^{3}=8+27+64=99=9 \cdot 11$, so $9 \mid 2^{3}+(2+1)^{3}+(2+2)^{3}$, so $P(2)$ holds.

Inductive Hypothesis: Assume that $9 \mid k^{3}+(k+1)^{3}+(k+2)^{3}$ for an arbitrary integer $k>1$. Note that this is equivalent to assuming that $k^{3}+(k+1)^{3}+(k+2)^{3}=9 j$ for some integer j by the definition of divides.

Inductive Step: Goal: Show $9 \mid(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$

$$
\begin{aligned}
(k+1)^{3}+(k+2)^{3}+(k+3)^{3} & =\left(k^{2}+6 k+9\right)(k+3)+(k+1)^{3}+(k+2)^{3} & & \text { [expanding trinomial] } \\
& =\left(k^{3}+6 k^{2}+9 k+3 k^{2}+18 k+27\right)+(k+1)^{3}+(k+2)^{3} & & \text { [expanding binomial] } \\
& =9 k^{2}+27 k+27+k^{3}+(k+1)^{3}+(k+2)^{3} & & \text { [adding like terms] } \\
& =9 k^{2}+27 k+27+9 j & & \text { [by I.H.] } \\
& =9\left(k^{2}+3 k+3+j\right) & & \text { [factoring out } 9]
\end{aligned}
$$

Since k and j are integers, $k^{2}+3 k+3+j$ is also an integer. Therefore, by the definition of divides, $9 \mid(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$, so $P(k) \rightarrow P(k+1)$ for an arbitrary integer $k>1$.

Conclusion: $P(n)$ holds for all integers $n>1$ by induction.

3. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \geq 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let $\mathrm{P}(n)$ be defined as "You can buy exactly n cents of stamps". We will prove $P(n)$ is true for all integers $n \geq 10$ by strong induction.

Base Cases: ($n=10,11,12$):

- $n=10: 10$ cents of stamps can be made from two 5 cent stamps.
- $n=11: 11$ cents of stamps can be made from one 5 cent and two 3 cent stamps.
- $n=12: 12$ cents of stamps can be made from four 3 cent stamps.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 12, \mathrm{P}(10) \wedge \mathrm{P}(11) \wedge \ldots \wedge \mathrm{P}(k)$ holds.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can make $k+1$ cents in stamps.
We want to buy $k+1$ cents in stamps. By the I.H., we can buy exactly $(k+1)-3=k-2$ cents in stamps. Then, we can add another 3 cent stamp in order to buy $k+1$ cents in stamps, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-2)$, and add 3 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-2 \geq 10$. Adding 2 to both sides, we needed to be able to assume that $k \geq 12$. So, we have to prove the base cases up to 12 , that is: $10,11,12$.

Another way to think about this is that we had to use a fact from 3 steps back from $k+1$ to $k-2$ in the IS, so we needed 3 base cases.

Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 10$.

4. Strong Induction: Functions

Let a function f be defined by:

- $f(1)=0$
- $f(2)=12$
- $f(n)=4 \cdot f(n-1)-3 \cdot f(n-2)$ for $n \geq 3$

Prove that $f(n)=2 \cdot 3^{n}-6$ for any positive integer n.

Solution:

Let $P(n)$ be the claim that $f(n)=2 \cdot 3^{n}-6$. We will prove $P(n)$ true for all integers $n \geq 1$ using strong induction.

Base Case:

- For $n=1,2 \cdot 3^{1}-6=2 \cdot 3-6=6-6=0=f(1)$, so $P(1)$ holds.
- For $n=2,2 \cdot 3^{2}-6=2 \cdot 9-6=18-6=12=f(2)$, so $P(2)$ holds.

Inductive Hypothesis: Suppose that $P(j)$ holds all $1 \leq j \leq k$ for some arbitrary positive integer $k \geq 2$. Inductive Step:

Goal: Show $P(k+1)$, i.e. $f(k+1)=2 \cdot 3^{k+1}-6$.

$$
\begin{array}{rlr}
f(k+1) & =4 \cdot f((k+1)-1)-3 \cdot f((k+1)-2) \\
& =4 \cdot f(k)-3 \cdot f(k-1) \\
& =4 \cdot\left(2 \cdot 3^{k}-6\right)-3 \cdot\left(2 \cdot 3^{k-1}-6\right) \\
& =8 \cdot 3^{k}-24-6 \cdot 3^{k-1}+18 \\
& =8 \cdot 3^{k}-6 \cdot 3^{k-1}-6 \\
& =8 \cdot 3^{k}-2 \cdot 3^{k}-6 \\
& =6 \cdot 3^{k}-6 \\
& =2 \cdot 3^{k+1}-6
\end{array}
$$

Thus, $P(k+1)$ holds.
Conclusion: Therefore, by the principles of strong induction, $P(n)$ holds for all positive integers n.

5. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". We will prove $P(n)$ is true for all integers $n \geq 18$ by strong induction.

Base Cases: $(n=18,19,20,21)$:

- $n=18: 18$ packs of candy can be made up of 2 packs of 7 and 1 pack of $4(18=2 * 7+1 * 4)$.
- $n=19: 19$ packs of candy can be made up of 1 pack of 7 and 3 packs of $4(19=1 * 7+3 * 4)$.
- $n=20: 20$ packs of candy can be made up of 5 packs of $4(20=5 * 4)$.
- $n=21: 21$ packs of candy can be made up of 3 packs of $7(21=3 * 7)$.

Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 21, \mathrm{P}(18) \wedge \ldots \wedge \mathrm{P}(k)$ hold.

Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can buy $k+1$ packs of candy.
We want to buy $k+1$ packs of candy. By the I.H., we can buy exactly $k-3$ packs, so we can add another pack of 4 packs in order to buy $k+1$ packs of candy, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-3)$, and add 4 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-3 \geq 18$. Adding 3 to both sides, we needed to be able to assume that $k \geq 21$. So, we have to prove the base cases up to 21 , that is: $18,19,20,21$.
Another way to think about this is that we had to use a fact from 4 steps back from $k+1$ to $k-3$ in the IS, so we needed 4 base cases.

Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 18$.

6. Structural Induction: a's and b's

Define a set \mathcal{S} of character strings over the alphabet $\{a, b\}$ by:

- a and $a b$ are in \mathcal{S}
- If $x \in \mathcal{S}$ and $y \in \mathcal{S}$, then $a x b \in \mathcal{S}$ and $x y \in \mathcal{S}$

Prove by induction that every string in \mathcal{S} has at least as many a 's as it does b 's.

Solution:

Let $P(s)$ be the claim that a string has at least many a 's as it does b 's. We will prove $P(s)$ true for all strings $s \in \mathcal{S}$ using structural induction.

Base Case:

- Consider $s=a$: there is one a and zero b 's, so $P(a)$ holds.
- Consider $s=a b$: there is one a and one b, so $P(a b)$ holds.

Let t be an arbitrary string in \mathcal{S} that is not one of the base cases. Then, by the exclusion rule, it must be that $t=a x b$ or $t=x y$ for some $x, y \in \mathcal{S}$.
Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ hold.
Inductive Step:
Goal: Prove $P(a x b)$ and $P(x y)$
First, we consider $a x b$. We are adding one a and one b to x. Per the IH, x must have at least as many a 's as it does b 's. Therefore, since adding one a and one b does not change the difference in the number of a 's and b 's, $a x b$ must have at least many a 's as it does b 's. Thus, $P(a x b)$ holds.
Second, we consider $x y$. Let m, n represent the number of a 's in x and y respectively. Similarly, let i, j represent the number of b 's in x and y. Per the $I H$, we know that $m \geq i$ and $n \geq j$. Adding these together, we see $m+n \geq i+j$. Therefore, $x y$ must have at least as many a 's (i.e., $m+n$ a's) as it does b 's (i.e., $i+j$ b's). Thus, $P(x y)$ holds.
So, $P(t)$ holds in both cases. Conclusion: Therefore, per the principles of structural induction, $P(s)$ holds for all strings in \mathcal{S}.

7. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in \mathfrak{B}
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x+y \in \mathfrak{B}$ and $x-y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4 .

Solution:

Let $P(b)$ be the claim that $4 \mid b$. We will prove P true for all numbers $b \in \mathfrak{B}$ by structural induction.

Base Case:

- $4 \mid 4$ is trivially true, so $P(4)$ holds.
- $12=3 \cdot 4$, so $4 \mid 12$ and $P(12)$ holds.

Let t be an arbitrary element from \mathfrak{B} that is not from the base cases. Then, by the exclusion rule, it must be that $t=x+y$ or $t=x-y$ for some $x, y \in \mathfrak{B}$.
Inductive Hypothesis: Suppose $P(x)$ and $P(y)$.
Inductive Step:
Goal: Prove $P(x+y)$ and $P(x-y)$
Per the IH, $4 \mid x$ and $4 \mid y$. By the definition of divides, $x=4 k$ and $y=4 j$ for some integers k, j. Then, $x+y=4 k+4 j=4(k+j)$. Since integers are closed under addition, $k+j$ is an integer, so $4 \mid x+y$ and $P(x+y)$ holds.
Similarly, $x-y=4 k-4 j=4(k-j)=4(k+(-1 \cdot j))$. Since integers are closed under addition and multiplication, and -1 is an integer, we see that $k-j$ must be an integer. Therefore, by the definition of divides, $4 \mid x-y$ and $P(x-y)$ holds.
So, $P(t)$ holds in both cases.
Conclusion: Therefore, $P(b)$ holds for all numbers $b \in \mathfrak{B}$.

