
CSE 390z: Mathematics for Computation Workshop
Week 5 Workshop Solutions

0. Conceptual Review
(a) What are the different proof strategies we’ve learned?

Solution:
• Direct proof
• Proof by contrapositive
• Proof of biconditional
• Proof by counterexample
• Proof by cases
• Proof by contradiction

(b) How do you know if a multiplicative inverse does not exist?
A multiplicative inverse does not exist when gcd(a, b) 6= 1.

(c) Bezout’s theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) is
equal to what?

gcd(a, b) = sa+ tb

(d) What is Euclid’s algorithm? What does it help us calculate?
Euclid’s algorithm helps us find gcd(a, b).The algorithm is as follows:

• Repeatedly use gcd(a, b) = gcd(b, a%b)

• When you reach gcd(g, 0), return g.

(e) What are the five steps that must be included in an induction proof?

(a) "Let P(n) be... . We show that P(n) is true for n ≥ 0 by induction"
(b) Base Case: Prove P(0).
(c) Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k ≥ 0.
(d) Inductive Step: Show P(k+1).
(e) Conclusion: We have shown P(k+1), so the result follows by induction.

This template is very important to follow for induction proofs! It is also important to pay attention to
the bounds for your variables, as you may not always be asked to prove something starting with P(0).

(f) In what step of an induction proof do you apply your inductive hypothesis? Do you always need
to use the inductive hypothesis? You apply your inductive hypothesis during the inductive step. You
must always use your inductive hypothesis at some point in your inductive step and clearly label it as "I.
H.".

1



Number Theory

1. Proofs by Contrapositive
For each part, write a proof by contrapositive of the statement.

(a) If a2 6≡ b2 (mod n), then a 6≡ b (mod n).

Solution:
We argue by contrapositive. Suppose a ≡ b (mod n). Then, by definition of equivalence mod n, n|(a− b)
and by definition of divides, there exists some integer k such that a− b = nk. Multiplying both sides of
the equation by a + b, we get (a − b)(a + b) = a2 − b2 = nk(a + b). Since integers are closed under
addition and multiplication, k(a+ b) must be an integer. Therefore, n|a2− b2 by definition of divides and
a2 ≡ b2 (mod n) by definition of equivalence mod n.

(b) For all integers a, b, if 3 - ab, then 3 - a and 3 - b.

Solution:
We argue by contrapositive. Suppose 3 | a or 3 | b. Thus, there are two cases to consider:
Case 1:
Suppose 3 | a. Then, by definition of divides, there exists some integer k such that a = 3k. Multiplying
both sides by b, we get ab = 3kb. Since integers are closed under multiplication, kb is an integer. Then,
by definition of divides, 3 | ab.
Case 2:
Suppose 3 | b. Then, by definition of divides, there exists some integer j such that b = 3j. Multiplying
both sides by a, we get ab = 3ja. Since integers are closed under multiplication, ja is an integer. Then,
by definition of divides, 3 | ab.
In both cases, Thus, if 3 | a or 3 | b, then 3 | ab.

2. Proofs by Contradiction
For each part, write a proof by contradiction of the statement.

(a) If a is rational and ab is irrational, then b is irrational.

Solution:
Suppose for the sake of contradiction that this statement is false, meaning there exists an a, b where a is
rational and ab is irrational, and b is not irrational. Then, b is rational. By definition of rational, a = s

t
and b = x

y for some integers s, t, x, y where t 6= 0 and y 6= 0. Multiplying these together, we get ab = sx
ty .

Since integers are closed under multiplication, sx, ty are integers. And since the product of two non zero
integers cannot be zero, ty 6= 0. Thus, ab is rational. This is a contradiction since we stated that ab was
irrational. Therefore, the original statement must be true.

(b) For all integers n, 4 - n2 − 3.

Solution:
Suppose for the sake of contradiction there exists an integer n such that 4 | (n2 − 3). Then, by definition
of divides, there exists an integer k such that n2 − 3 = 4k. We will consider two cases:
Case 1: n is even
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By definition of even, there is some integer a where n = 2a. Substituting n into the equation above, we
get (2a)2 − 3 = 4a2 − 3 = 4k. By algebra,

k =
4a2 − 3

4
= a2 − 3

4

Since integers are closed under multiplication, a2 must be an integer. Since 3
4 is not an integer, k must

not be an integer. This is a contradiction, since k was introduced as an integer.
Case 2: n is odd
By definition of odd, there is some integer b where n = 2b + 1, Substituting n into the equation above,
we get (2b+ 1)2 − 3 = 4b2 + 4b+ 1− 3 = 4k. By algebra,

k =
4b2 + 4b− 2

4
= b2 + b− 1

2

Since integers are closed under multiplication and addition, b2 + b must be an integer. Since 1
2 is not an

integer, k is not an integer. This is a contradiction, since k was introduced as an integer.
As shown, all cases led to a contradiction, so the original statement must be true.

3. Don’t be Irrational!
Recall that the predicate Rational(x) is defined as ∃a∃b(Integer(a) ∧ Integer(b) ∧ b 6= 0 ∧ x = a

b ).
One of the following statements is true, and one is false:

• If xy and x are both rational, then y is also rational.

• If x− y and x are both rational, then y is also rational.

Decide which statement is true and which statement is false. Prove the true statement, and disprove the false
statement. For the disproof, it will be helpful to use proof by counterexample.

Solution:
Claim: If xy and x are both rational, then y is also rational.
We wish to disprove this through counterexample. Let x be 0, which is rational. x ∗ y will be 0 regardless of y,
so for an irrational y like y = π, x and xy are rational, while y is not.

Claim: If x− y and x are both rational, then y is also rational.

Proof. Suppose x and x − y are rational. By the definition of rational numbers, if x and x − y are rational,
then there are a, b, n,m ∈ Z with b,m 6= 0 such that x = a

b and x− y = n
m . Then:

x− y =
n

m
Given

y = x− n

m
Algebra

y =
a

b
− n

m
Substituting x =

a

b

Now we can rearrange this expression for y:

y =
a

b
− n

m

=
a

b
∗ m

m
− n

m
∗ b

b

=
am

bm
− nb

bm

=
am− bn

bm
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Since integers are closed on multiplication and subtraction, am, bn, bm ∈ Z, and therefore am− bn ∈ Z. Since
b,m 6= 0, bm 6= 0 also, and therefore for p = am − bn and q = bm, y = p

q for p, q ∈ Z with q 6= 0. By the
definition of rational, y is rational.

4. Modular arithmetic
Prove that for any odd integer a there is an integer b that satisfies ab ≡ 2 (mod 8).
Solution:
Let a be an arbitrary odd integer. Since a is not even, a does not divide 8. Since 8 is only divisible by 1, 2, 4,
and 8, we have gcd(a, 8) = 1. By Bezout’s Theorem, we know gcd(a, 8) = 1 = ax+ 8y for some integers x, y.
By algebra, 8y = 1−ax. Multiplying both sides by 2, we get 8(2y) = 2−a(2x). Since integers are closed under
multiplication, 2y and 2x are integers. By definition of divides, 8|(2− a(2x)) and by definition of equivalence,
a(2x) ≡ 2 (mod 8). So, there is an integer b = 2x that satisfies ab ≡ 2 (mod 8). Since a was an arbitrary odd
integer, there is an integer b that satisfies ab ≡ 2 (mod 8) for any odd integer a.

5. Extended Euclidean Algorithm
Find all solutions in the range of 0 ≤ x < 2021 to the modular equation:

311x ≡ 3 (mod 2021)

Solution:

gcd(2021, 311) = gcd(311, 2021 mod 311) = gcd(311, 155)
= gcd(155, 311 mod 155) = gcd(155, 1)
= 1

Then we know that there is a multiplicative inverse:

2021 = 311 ∗ 6 + 155

311 = 155 ∗ 2 + 1

155 = 1 ∗ 155

From here, we can rearrange the equations to get:

155 = 2021− 311 ∗ 6
1 = 311− 155 ∗ 2

From here, we use back substitution and plug these back into our equations:

1 = 311− 155 ∗ 2
1 = 311− 2 ∗ (2021− 311 ∗ 6)
1 = 311− 2 ∗ 2021 + 12 ∗ 311
1 = 13 ∗ 311− 2 ∗ 2021

So the multiplicative inverse is 13, i.e. 311 ∗ 13 ≡2021 1, so 311 ∗ 13 ∗ 3 ≡2021 3. Then x = 13 ∗ 3 + 2021k =
39 + 2021k for k ∈ N, but since we’re only asked for solutions in the range of 0 ≤ x < 2021, x = 39.
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Induction

6. Inductively Divisible
Prove that for all n ∈ N, 8n − 3n is divisible by 5 (i.e. 5|8n − 3n) by induction on n.
Solution:

1. Let P(n) be 5|8n − 3n. We will show that P(n) is true for n ∈ N by induction.

2. Base Case: (n = 0)
80 − 30 = 1− 1 = 0 = 0 ∗ 5, so 5|80 − 30 and ∴ P(0) is true.

3. Inductive Hypothesis: Suppose P(k) is true for an arbitrary k ∈ N.

4. Inductive Step:

Goal: Show P (k + 1), i.e. show 5|8k+1 − 3k+1

8k+1 − 3k+1 = 8 · 8k − 3 · 3k (Factor exponentials)
= 5 · 8k + 3 · 8k − 3 · 3k (split 8 into 5 + 3)
= 5 · 8k + 3 · (8k − 3k) (factor out 3)

By the I.H., 5|8k − 3k, which means there is an integer q such that 5q = 8k − 3k, so:

8k+1 − 3k+1 = 5 · 8k + 3 · 5q (by I.H.)
= 5 · (8k + 3q) (factor out 5)

Since 5|5 · (8k + 3q), 5|8k+1 − 3k+1, so P(k + 1) is true.

5. Thus, we have shown P(n) is true for all n ∈ N by induction.

7. Prove the inequality
Prove by induction on n that for all n ∈ N the inequality (3 + π)n ≥ 3n + nπ3n−1 is true.
Solution:

1. Let P (n) be "(3 + π)n ≥ 3n + nπ3n−1". We will prove P (n) is true for all n ∈ N, by induction.

2. Base case (n = 0): (3 + π)0 = 1 and 30 + 0 · π · 3−1 = 1, since 1 ≥ 1, P (0) is true.

3. Inductive Hypothesis: Suppose that P (k) is true for some arbitrary integer k ∈ N.

4. Inductive Step:

Goal: Show P (k+1), i.e. show (3+π)k+1 ≥ 3k+1+(k+1)π3(k+1)−1 = 3k+1+(k+1)π3k

(3 + π)k+1 = (3 + π)k · (3 + π) (Factor out (3 + π))
≥ (3k + k3k−1π) · (3 + π) (By I.H., (3 + π) ≥ 0)
= 3 · 3k + 3kπ + 3k3k−1π + k3k−1π2 (Distributive property)
= 3k+1 + 3kπ + k3kπ + k3k−1π2 (Simplify)
= 3k+1 + (k + 1)3kπ + k3k−1π2 (Factor out (k + 1))
≥ 3k+1 + (k + 1)π3k (k3k−1π2 ≥ 0)

5. So by induction, P (n) is true for all n ∈ N.
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8. Inductively Odd
An 123 student learning recursion wrote a recursive Java method to determine if a number is odd or not, and
needs your help proving that it is correct.

1 public static boolean oddr(int n) {
2 if (n == 0)
3 return False;
4 else
5 return !oddr(n−1);
6 }

Help the student by writing an inductive proof to prove that for all integers n ≥ 0, the method oddr returns
True if n is an odd number, and False if n is not an odd number (i.e. n is even). You may recall the definitions
Odd(n) := ∃x ∈ Z(n = 2x+ 1) and Even(n) := ∃x ∈ Z(n = 2x); !True = False and !False = True.

Solution:
Proof. Let P(n) be "oddr(n) returns True if n is odd, or False if n is even". We will show that P(n) is true for
all integers n ≥ 0 by induction on n.

Base Case: (n = 0)
0 is even, so P(0) is true if oddr(0) returns False, which is exactly the base case of oddr, so P(0) is true.
Inductive Hypothesis: Suppose P(k) is true for an arbitrary integer k ≥ 0.
Inductive Step:

• Case 1: k + 1 is even.
If k+1 is even, then there is an integer x s.t. k+1 = 2x, so then k = 2x−1 = 2(x−1)+1, so therefore
k is odd. We know that since k+1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we
know that since k is odd, oddr(k) returns True, so oddr(k+1) returns !oddr(k)= False, and k + 1 is even,
therefore P(k+1) is true.

• Case 2: k + 1 is odd.
If k + 1 is odd, then there is an integer x s.t. k + 1 = 2x + 1, so then k = 2x and therefore k is even.
We know that since k + 1 > 0, oddr(k+1) should return !oddr(k). By the Inductive Hypothesis, we know
that since k is even, oddr(k) returns False, so oddr(k+1) returns !oddr(k)= True, and k + 1 is odd, there-
fore P(k+1) is true.

Then P(k + 1) is true for all cases. Thus, we have shown P(n) is true for all integers n ≥ 0 by induction.
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