Week 4 Workshop Solutions

Conceptual Review

Set Theory
(a) Definitions

Set Equality: $\quad A=B:=\forall x(x \in A \leftrightarrow x \in B)$
Subset: $A \subseteq B:=\forall x(x \in A \rightarrow x \in B)$
Union: $A \cup B:=\{x: x \in A \vee x \in B\}$
Intersection: $A \cap B:=\{x: x \in A \wedge x \in B\}$
Set Difference: $A \backslash B=A-B:=\{x: x \in A \wedge x \notin B\}$
Set Complement: $\bar{A}=A^{C}:=\{x: x \notin A\}$
Powerset: $\mathcal{P}(A):=\{B: B \subseteq A\}$
Cartesian Product: $A \times B:=\{(a, b): a \in A, b \in B\}$
(b) How do we prove that for sets A and $B, A \subseteq B$?

Solution:

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.
(c) How do we prove that for sets A and $B, A=B$?

Solution:

Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.

Number Theory

(d) Definitions

a divides $b: \quad a \mid b \leftrightarrow \quad \exists k \in \mathbb{Z}(b=k a)$
a is congruent to b modulo $m: \quad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)$
(e) What's the Division Theorem?

Solution:

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$, there exist unique integers q, r with $0 \leq r<d$, such that $a=d q+r$.

Set Theory

1. Set Operations

Let $A=\{1,2,5,6,8\}$ and $B=\{2,3,5\}$.
(a) What is the set $A \cap(B \cup\{2,8\})$?

Solution:

$\{2,5,8\}$
(b) What is the set $\{10\} \cup(A \backslash B)$?

Solution:

$\{1,6,8,10\}$
(c) What is the set $\mathcal{P}(B)$?

Solution:

$\{\{2,3,5\},\{2,3\},\{2,5\},\{3,5\},\{2\},\{3\},\{5\}, \emptyset\}$
(d) How many elements are in the set $A \times B$? List 3 of the elements.

Solution:

15 elements, for example $(1,2),(1,3),(1,5)$.

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.

Solution:

Let $x \in A \cap B$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in B$. So certainly $x \in A$ or $x \in B$ (using the Elim \wedge and Intro \vee rules). Then by definition of union, $x \in A \cup B$. Since x was arbitrary, $A \cap B \subseteq A \cup B$.
(b) Prove that $A \cap(A \cup B)=A$ for any sets A, B.

Solution:

\Rightarrow
Let $x \in A \cap(A \cup B)$ be arbitrary. Then by definition of intersection, $x \in A$ and $x \in A \cup B$. So, $x \in A$ must be true $($ Elim \wedge). Since x was arbitrary, $A \cap(A \cup B) \subseteq A$.
\Leftarrow
Let $x \in A$ be arbitrary. So certainly $x \in A$ or $x \in B$ (by the Intro \vee rule). Then by definition of union, $x \in A \cup B$. Since $x \in A$ and $x \in A \cup B$, by definition of intersection, $x \in A \cap(A \cup B)$. Since x was arbitrary, $A \subseteq A \cap(A \cup B)$.

Thus we have shown that $A \cap(A \cup B)=A$ through two subset proofs.
(c) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$ for any sets A, B.

Solution:

\Rightarrow
Let $x \in A \cap(A \cup B)$ be arbitrary. Then by definition of intersection $x \in A$ and $x \in A \cup B$. Since $x \in A$, then certainly $x \in A$ or $x \in A \cap B$ (Intro \vee). Then by definition of union. $x \in A \cup(A \cap B)$. Thus since x was arbitrary, we have shown $A \cap(A \cup B) \subseteq A \cup(A \cap B)$.

\Leftarrow

Let $x \in A \cup(A \cap B)$ be arbitrary. Then by definition of union, $x \in A$ or $x \in A \cap B$. Then by definition of intersection, $x \in A$, or $x \in A$ and $x \in B$. Then by distributivity, $x \in A$ or $x \in A$, and $x \in A$ or $x \in B$. Then by idempotency, $x \in A$, and $x \in A$ or $x \in B$. Then by definition of union, $x \in A$, and $x \in A \cup B$. Then by definition of intersection, $x \in A \cap(A \cup B)$. Thus since x was arbitrary, we have shown that $A \cup(A \cap B) \subseteq A \cap(A \cup B)$.

Thus we have shown $A \cap(A \cup B)=A \cup(A \cap B)$ through two subset proofs.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq(A \cup B) \times(C \cup D)$.

Solution:

Let $x \in A \times C$ be arbitrary. Then x is of the form $x=(y, z)$, where $y \in A$ and $z \in C$. Then certainly $y \in A$ or $y \in B$ (by the Intro \vee rule). Then by definition of union, $y \in(A \cup B)$. Similarly, since $z \in C$, certainly $z \in C$ or $z \in D$. Then by definition, $z \in(C \cup D)$. Since $x=(y, z)$, then $x \in(A \cup B) \times(C \cup D)$. Since x was arbitrary, we have shown $A \times C \subseteq(A \cup B) \times(C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Solution:

Let X be an arbitrary set in $\mathcal{P}(A)$. By definition of power set, $X \subseteq A$. We need to show that $X \in \mathcal{P}(B)$, or equivalently, that $X \subseteq B$. Let $x \in X$ be arbitrary. Since $X \subseteq A$, it must be the case that $x \in A$. We were given that $A \subseteq B$. By definition of subset, any element of A is an element of B. So, it must also be the case that $x \in B$. Since x was arbitrary, we know any element of X is an element of B. By definition of subset, $X \subseteq B$. By definition of power set, $X \in \mathcal{P}(B)$. Since X was an arbitrary set, any set in $\mathcal{P}(A)$ is in $\mathcal{P}(B)$, or, by definition of subset, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Set Prove or Disprove

(a) Prove or disprove: For any sets A and $B, A \cup B \subseteq A \cap B$.

Solution:

We wish to disprove this claim via a counterexample. Choose $A=\{1\}, B=\varnothing$. Note that $A \cup B=$ $\{1\} \cup \varnothing=\{1\}$ by definition of set union. Note that $A \cap B=\{1\} \cap \varnothing=\varnothing$ by definition of set intersection. $\{1\} \nsubseteq \varnothing$, so the claim does not hold for these sets. Since we found a counterexample to the claim, we have shown that it is not the case that $A \cup B \nsubseteq A \cap B$ for all sets A and B.
(b) Prove or disprove: For any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Solution:

Let A, B, C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Let x be an arbitrary element of A. Then, by definition of subset, $x \in B$, and by definition of subset again, $x \in C$. Since x was an arbitrary element
of A, we see that all elements of A are in C, so by definition of subset, $A \subseteq C$. So, for any sets A, B, C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Number Theory

6. Modular Computation

(a) Circle the statements below that are true.

Recall for $a, b \in \mathbb{Z}: a \mid b$ iff $\exists k \in \mathbb{Z}(b=k a)$.
(a) $1 \mid 3$
(b) $3 \mid 1$
(c) $2 \mid 2018$
(d) $-2 \mid 12$
(e) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

Solution:

(a) True
(b) False
(c) True
(d) True
(e) True
(b) Circle the statements below that are true.

Recall for $a, b, m \in \mathbb{Z}$ and $m>0: a \equiv b(\bmod m)$ iff $m \mid(a-b)$.
(a) $-3 \equiv 3(\bmod 3)$
(b) $0 \equiv 9000(\bmod 9)$
(c) $44 \equiv 13(\bmod 7)$
(d) $-58 \equiv 707(\bmod 5)$
(e) $58 \equiv 707(\bmod 5)$

Solution:

(a) True
(b) True
(c) False
(d) True
(e) False

7. Modular Addition

Let m be a positive integer. Prove that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$.

Solution:

Let $m>0, a, b, c, d$ be arbitrary integers. Assume that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Then by definition of mod, $m \mid(a-b)$ and $m \mid(c-d)$. Then by definition of divides, there exists some integer k such that $a-b=m k$, and there exists some integer j such that $c-d=m j$. Then $(a-b)+(c-d)=m k+m j$. Rearranging, $(a+c)-(b+d)=m(k+j)$. Then by definition of divides, $m \mid(a+c)-(b+d)$. Then by definition of congruence, $a+c \equiv b+d(\bmod m)$.

8. Divisibility Proof

Let the domain of discourse be integers. Consider the following claim:

$$
\forall n \forall d((d \mid n) \rightarrow(-d \mid n))
$$

(a) Translate the claim into English.

Solution:

For integers n, d, if $d \mid n$, then $-d \mid n$.
(b) Write an English proof that the claim holds.

Solution:

Let d, n be arbitrary integers, and suppose $d \mid n$. By definition of divides, there exists some integer k such that $n=d k=1 \cdot d k$. Note that $-1 \cdot-1=1$. Substituting, we see $n=(-1)(-1) d k$. Rearranging, we have $n=(-d)(-1 \cdot k)$. Since k is an integer, $-1 \cdot k$ is an integer because the integers are closed under multiplication. So, by definition of divides, $-d \mid n$. Since d and n were arbitrary, it follows that for any integers d and n, if $d \mid n$, then $-d \mid n$.

9. Modular Multiplication

Write an English proof to prove that for an integer $m>0$ and any integers a, b, c, d, if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.

Solution:

Let $m>0, a, b, c, d$ be arbitrary integers. Assume that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Then by definition of mod, $m \mid(a-b)$ and $m \mid(c-d)$. Then by definition of divides, there exists some integer k such that $a-b=m k$, and there exists some integer j such that $c-d=m j$. Then $a=b+m k$ and $c=d+m j$. So, multiplying, $a c=(b+m k)(d+m j)=b d+m k d+m j b+m^{2} j k=b d+m(k d+j b+m j k)$. Subtracting $b d$ from both sides, $a c-b d=m(k d+j b+m j k)$. By definition of divides, $m \mid a c-b d$. Then by definition of congruence, $a c \equiv b d(\bmod m)$.

10. Another Divisibility Proof

Write an English proof to prove that if k is an odd integer, then $4 \mid k^{2}-1$.

Solution:

Let k be an arbitrary odd integer. Then by definition of odd, $k=2 j+1$ for some integer j. Then $k^{2}-1=$ $(2 j+1)^{2}-1=4 j^{2}+4 j+1-1=4 j^{2}+4 j=4\left(j^{2}+j\right)$. Then by definition of divides, $4 \mid k^{2}-1$.

