CSE 390Z: Mathematics for Computation Workshop

Week 4 Workshop Solutions

Conceptual Review
Set Theory
(a) Definitions

Set Equality: A= B :=Vz(z € A+ x € B)
Subset: AC B:=Vz(r € A— z € B)
Union: AUB:={x : x € AV € B}
Intersection: ANB:={zx : x € ANz € B}
Set Difference: A\B=A—-B:={x : x € ANz ¢ B}
Set Complement: A= A% :={z : ¢ A}
Powerset: P(A):={B : B C A}
Cartesian Product: A x B :={(a,b) :a € A, b€ B}

(b) How do we prove that for sets A and B, A C B?

Solution:

Let z € A be arbitrary... thus x € B. Since x was arbitrary, A C B.

(c) How do we prove that for sets A and B, A = B?

Solution:

Use two subset proofs to show that A C B and B C A.

Number Theory

(d) Definitions
a dividesb: a|b <« FkeZ (b=ka)
a is congruent to b modulo m: a=b(mod m) <« m| (a—0)

(e) What's the Division Theorem?

Solution:

For a € Z, d € Z with d > 0, there exist unique integers ¢, with 0 < r < d, such that a = dq + r.



Set Theory

1. Set Operations
Let A ={1,2,5,6,8} and B = {2,3,5}.

(a)

(b)

()

(d)

What is the set AN (BU{2,8})?

Solution:
{2, 9, 8}

What is the set {10} U (A \ B)?
Solution:
{1,6,8,10}

What is the set P(B)?

Solution:
{{2,3,5},{2,3},{2,5},{3,5}, {2}, {3}, {5}, 0}

How many elements are in the set A x B? List 3 of the elements.

Solution:
15 elements, for example (1,2), (1, 3), (1,5).

2. Standard Set Proofs

(a)

()

Prove that AN B C AU B for any sets A, B.

Solution:

Let x € AN B be arbitrary. Then by definition of intersection, z € A and x € B. So certainly x € A
or x € B (using the Elim A and Intro V rules). Then by definition of union, x € AU B. Since = was
arbitrary, ANB C AU B.

Prove that AN (AU B) = A for any sets A, B.

Solution:

=
Let z € AN (AU B) be arbitrary. Then by definition of intersection, z € A and x € AUB. So, z € A
must be true (Elim A). Since x was arbitrary, AN (AU B) C A.

=

Let © € A be arbitrary. So certainly x € A or z € B (by the Intro V rule). Then by definition of union,
x € AUB. Since z € A and x € AU B, by definition of intersection, x € AN (AU B). Since = was
arbitrary, AC AN (AU B).

Thus we have shown that AN (AU B) = A through two subset proofs.

Prove that AN (AU B) = AU (AN B) for any sets A, B.



Solution:

=
Let x € AN (AU B) be arbitrary. Then by definition of intersection z € A and x € AU B. Since x € A,
then certainly x € A or z € AN B (Intro V). Then by definition of union. z € AU (AN B). Thus since
x was arbitrary, we have shown AN (AUB)C AU (ANB).

=
Let x € AU(AN B) be arbitrary. Then by definition of union, x € A or x € AN B. Then by definition of
intersection, x € A, or ¢ € A and x € B. Then by distributivity, x € Aorxz € A, and x € Aor xz € B.
Then by idempotency, z € A, and x € A or x € B. Then by definition of union, x € A, and x € AU B.

Then by definition of intersection, x € AN (AU B). Thus since = was arbitrary, we have shown that
AU(ANB)C AN(AUB,).

Thus we have shown AN (AU B) = AU (AN B) through two subset proofs.

3. Cartesian Product Proof
Write an English proof to show that A x C' C (AU B) x (CU D).
Solution:

Let z € A x C be arbitrary. Then z is of the form z = (y, z), where y € A and z € C. Then certainly y € A
or y € B (by the Intro V rule). Then by definition of union, y € (AU B). Similarly, since z € C, certainly
z € Cor z € D. Then by definition, z € (CUD). Since x = (y, 2), then z € (AU B) x (CUD). Since x was
arbitrary, we have shown A x C' C (AU B) x (CUD).

4. Powerset Proof
Suppose that A C B. Prove that P(A) C P(B).
Solution:

Let X be an arbitrary set in P(A). By definition of power set, X C A. We need to show that X € P(B), or
equivalently, that X C B. Let x € X be arbitrary. Since X C A, it must be the case that z € A. We were
given that A C B. By definition of subset, any element of A is an element of B. So, it must also be the case
that x € B. Since x was arbitrary, we know any element of X is an element of B. By definition of subset,
X C B. By definition of power set, X € P(B). Since X was an arbitrary set, any set in P(A) is in P(B), or,
by definition of subset, P(A) C P(B).

5. Set Prove or Disprove
(a) Prove or disprove: For any sets A and B, AUB C AN B.

Solution:

We wish to disprove this claim via a counterexample. Choose A = {1}, B = @&. Note that AU B =
{1}U@ = {1} by definition of set union. Note that ANB = {1} N@ = & by definition of set intersection.
{1} Z &, so the claim does not hold for these sets. Since we found a counterexample to the claim, we
have shown that it is not the case that AU B € AN B for all sets A and B.

(b) Prove or disprove: For any sets A, B, and C, if AC B and B C C, then A C C.

Solution:

Let A, B, C be sets, and suppose A C B and B C C. Let = be an arbitrary element of A. Then, by
definition of subset, x € B, and by definition of subset again, x € C'. Since x was an arbitrary element



of A, we see that all elements of A are in C, so by definition of subset, A C C. So, for any sets A, B,
C,if ACBand BC(C, then ACC.

Number Theory

6. Modular Computation

(a) Circle the statements below that are true.
Recall for a,b € Z: alb iff 3k € Z (b = ka).

(a) 13

(b) 3[1

(c) 22018

(d) —2/12

() 1-2-3-4/1-2-3-4-5

Solution:

(b) Circle the statements below that are true.
Recall for a,b,m € Z and m > 0: a = b (mod m) iff m|(a — b).

(a) —3=3 (mod 3)
(b) 0 =9000 (mod 9)
(c) 44 =13 (mod 7)
(d) —58 =707 (mod 5)
(e) 58 = 707 (mod 5)
Solution

(a) True

(b) True

(c) False

(d) True

(e) False



7. Modular Addition
Let m be a positive integer. Prove that if a = b (mod m) and ¢ = d (mod m), then a + ¢ =b+ d (mod m).
Solution:

Let m > 0, a, b, ¢, d be arbitrary integers. Assume that a = b (mod m) and ¢ = d (mod m). Then by definition
of mod, m | (a —b) and m | (¢ — d). Then by definition of divides, there exists some integer k such that
a — b = mk, and there exists some integer j such that ¢ — d = mj. Then (a — b) + (¢ — d) = mk + mj.
Rearranging, (a+c¢)— (b+d) = m(k+7). Then by definition of divides, m |(a+c¢) — (b+d). Then by definition
of congruence, a + ¢ =0b+ d (mod m).

8. Divisibility Proof

Let the domain of discourse be integers. Consider the following claim:
VnVd ((d | n) — (—d | n))
(a) Translate the claim into English.

Solution:

For integers n,d, if d | n, then —d | n.
(b) Write an English proof that the claim holds.

Solution:

Let d,n be arbitrary integers, and suppose d|n. By definition of divides, there exists some integer k such
that n = dk = 1 - dk. Note that —1- —1 = 1. Substituting, we see n = (—1)(—1)dk. Rearranging, we
have n = (—d)(—1- k). Since k is an integer, —1 - k is an integer because the integers are closed under
multiplication. So, by definition of divides, —d|n. Since d and n were arbitrary, it follows that for any
integers d and n, if d|n, then —d|n.

9. Modular Multiplication

Write an English proof to prove that for an integer m > 0 and any integers a,b,c,d, if a = b (mod m) and
¢ =d (mod m), then ac = bd (mod m).

Solution:

Let m > 0, a, b, ¢, d be arbitrary integers. Assume that a = b (mod m) and ¢ = d (mod m). Then by definition
of mod, m | (a —b) and m | (¢ — d). Then by definition of divides, there exists some integer k such that
a — b = mk, and there exists some integer j such that c —d = mj. Then a = b+ mk and ¢ = d + mj. So,
multiplying, ac = (b + mk)(d + mj) = bd + mkd + mzjb + m?jk = bd + m(kd + jb + mjk). Subtracting bd
from both sides, ac — bd = m(kd + jb + mjk). By definition of divides, m | ac — bd. Then by definition of
congruence, ac = bd (mod m).

10. Another Divisibility Proof
Write an English proof to prove that if &k is an odd integer, then 4 | k% — 1.

Solution:

Let k be an arbitrary odd integer. Then by definition of odd, k = 2j + 1 for some integer j. Then k? — 1 =
(25 +1)2—1=452+4j+1—1=452+45 = 4(j%2 + j). Then by definition of divides, 4 | k% — 1.



