CSE 390Z: Mathematics of Computing Workshop

Week 9 Workshop

0. Conceptual Review

(a) Regular expression rules:

Basis: ϵ, \varnothing, a for $a \in \Sigma$
Recursive: If A, B are regular expressions, $(A \cup B), A B$, and A^{*} are regular expressions.
(b) Match the relation property to its definition:

Reflexive
Symmetric $\quad \forall a(a \in A \rightarrow(a, a) \in R)$
Antisymmetric
Transitive

$$
\begin{array}{r}
\forall a, b((a, b) \in R \wedge(b, c) \in R) \rightarrow(a, c) \in R) \\
\forall a(a \in A \rightarrow(a, a) \in R) \\
\forall a, b((a, b) \in R \rightarrow(b, a) \in R) \\
\forall a, b(((a, b) \in R \wedge a \neq b) \rightarrow(b, a) \notin R) .
\end{array}
$$

1. Regular Expressions Warmup

Consider the following Regular Expression (RegEx):

$$
1(45 \cup 54)^{\star} 1
$$

List 5 strings accepted by the RegEx and 5 strings from $T:=\{1,4,5\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words.

2. Context Free Grammars Warmup

Consider the following CFG which generates strings from the language $\mathrm{V}:=\{0,1,2,3,4\}^{*}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow 0 \mathbf{X} 4 \\
& \mathbf{X} \rightarrow 1 \mathbf{X} 3 \mid 2
\end{aligned}
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

3. Simplify the RegEx

Consider the following Regular Expression (RegEx):

$$
0^{\star}(0 \cup 1)^{\star}((01) \cup(11) \cup(10) \cup(00)) 1^{\star}(0 \cup 1)^{\star}
$$

List 3 strings accepted by the RegEx and 3 strings from $S:=\{0,1\}^{\star}$ rejected by the RegEx. Then, summarize this RegEx in your own words and write a simpler RegEx that accepts exactly the same set of strings.

4. Constructing RegExs and CFGs

For each of the following, construct a regular expression and CFG for the specified language.
(a) Strings from the language $S:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's.
(c) Strings from the language $S:=\{a, b\}^{*}$ with odd length.
(d) (Challenge) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

5. Relations Examples

(a) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.
(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

6. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.
(a) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.
(b) Prove or disprove: If R is symmetric, \bar{R} (the complement of R) is symmetric.

7. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings from the language $\Sigma:=\{a\}^{*}$ with an even number of a 's.
(b) Strings from the language $\Sigma=\{a, b\}$ with odd length.
(c) Strings from the language $\Sigma=\{a, b\}$ with an even number of a 's or an odd number of b 's.

