CSE 390Z: Mathematics for Computation Workshop

Week 7 Workshop

0. Complete the Induction Proof

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

Complete the induction proof below:
Let $\mathrm{P}(n)$ be defined as \qquad . We will prove $P(n)$ is true for all integers $n \geq$ \qquad by strong induction.

Base Cases:

So the base cases hold.
Inductive Hypothesis: Suppose for some arbitrary integer $k \geq$ \qquad , $\mathrm{P}(j)$ is true for $1 \leq j \leq k$.

Inductive Step:
Goal: Show $P(k+1)$, i.e. show that $f(k+1)=(k+1)^{2}$.

$$
\begin{aligned}
f(k+1) & =f(k+1-1)-f(k+1-2)+f(k+1-3)+2(2(k+1)-3) & & \text { Definition of } \mathrm{f} \\
& =f(k)-f(k-1)+f(k-2)+2(2 k-1) & & \text { Algebra }
\end{aligned}
$$

So $\mathrm{P}(k+1)$ holds.
Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq$ \qquad .

1. Induction: Another Inequality

Prove by induction on n that for all integers $n \geq 4$ the inequality $n!>2^{n}$ is true.

2. Induction: Divides

Prove that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n>1$ by induction.

3. Strong Induction: Stamp Collection

A store sells 3 cent and 5 cent stamps. Use strong induction to prove that you can make exactly n cents worth of stamps for all $n \geq 10$.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

4. Strong Induction: Functions

Let a function f be defined by:

- $f(1)=0$
- $f(2)=12$
- $f(n)=4 \cdot f(n-1)-3 \cdot f(n-2)$ for $n \geq 3$

Prove that $f(n)=2 \cdot 3^{n}-6$ for any positive integer n.

5. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

6. Structural Induction: a's and b's

Define a set \mathcal{S} of character strings over the alphabet $\{a, b\}$ by:

- a and $a b$ are in \mathcal{S}
- If $x \in \mathcal{S}$ and $y \in \mathcal{S}$, then $a x b \in \mathcal{S}$ and $x y \in \mathcal{S}$

Prove by induction that every string in \mathcal{S} has at least as many a 's as it does b 's.

7. Structural Induction: Divisible by 4

Define a set \mathfrak{B} of numbers by:

- 4 and 12 are in \mathfrak{B}
- If $x \in \mathfrak{B}$ and $y \in \mathfrak{B}$, then $x+y \in \mathfrak{B}$ and $x-y \in \mathfrak{B}$

Prove by induction that every number in \mathfrak{B} is divisible by 4 .

