Week 4 Workshop

Conceptual Review

Set Theory
(a) Definitions

Set Equality: $A=B:=\forall x(x \in A \leftrightarrow x \in B)$
Subset: $A \subseteq B:=\forall x(x \in A \rightarrow x \in B)$
Union: $A \cup B:=\{x: x \in A \vee x \in B\}$
Intersection: $A \cap B:=\{x: x \in A \wedge x \in B\}$
Set Difference: $\quad A \backslash B=A-B:=\{x: x \in A \wedge x \notin B\}$
Set Complement: $\bar{A}=A^{C}:=\{x: x \notin A\}$
Powerset: $\mathcal{P}(A):=\{B: B \subseteq A\}$
Cartesian Product: $A \times B:=\{(a, b): a \in A, b \in B\}$
(b) How do we prove that for sets A and $B, A \subseteq B$?
(c) How do we prove that for sets A and $B, A=B$?

Number Theory

(d) Definitions
a divides $b: \quad a \mid b \quad \leftrightarrow \quad \exists k \in \mathbb{Z}(b=k a)$
a is congruent to b modulo $m: \quad a \equiv b(\bmod m) \leftrightarrow m \mid(a-b)$
(e) What's the Division Theorem?

Set Theory

1. Set Operations

Let $A=\{1,2,5,6,8\}$ and $B=\{2,3,5\}$.
(a) What is the set $A \cap(B \cup\{2,8\})$?
(b) What is the set $\{10\} \cup(A \backslash B)$?
(c) What is the set $\mathcal{P}(B)$?
(d) How many elements are in the set $A \times B$? List 3 of the elements.

2. Standard Set Proofs

(a) Prove that $A \cap B \subseteq A \cup B$ for any sets A, B.
(b) Prove that $A \cap(A \cup B)=A$ for any sets A, B.
(c) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$ for any sets A, B.

3. Cartesian Product Proof

Write an English proof to show that $A \times C \subseteq(A \cup B) \times(C \cup D)$.

4. Powerset Proof

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

5. Set Prove or Disprove

(a) Prove or disprove: For any sets A and $B, A \cup B \subseteq A \cap B$.
(b) Prove or disprove: For any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Number Theory

6. Modular Computation

(a) Circle the statements below that are true.

Recall for $a, b \in \mathbb{Z}: a \mid b$ iff $\exists k \in \mathbb{Z}(b=k a)$.
(a) $1 \mid 3$
(b) $3 \mid 1$
(c) $2 \mid 2018$
(d) $-2 \mid 12$
(e) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
(b) Circle the statements below that are true.

Recall for $a, b, m \in \mathbb{Z}$ and $m>0: a \equiv b(\bmod m)$ iff $m \mid(a-b)$.
(a) $-3 \equiv 3(\bmod 3)$
(b) $0 \equiv 9000(\bmod 9)$
(c) $44 \equiv 13(\bmod 7)$
(d) $-58 \equiv 707(\bmod 5)$
(e) $58 \equiv 707(\bmod 5)$

7. Modular Addition

Let m be a positive integer. Prove that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$.

8. Divisibility Proof

Let the domain of discourse be integers. Consider the following claim:

$$
\forall n \forall d((d \mid n) \rightarrow(-d \mid n))
$$

(a) Translate the claim into English.
(b) Write an English proof that the claim holds.

9. Modular Multiplication

Write an English proof to prove that for an integer $m>0$ and any integers a, b, c, d, if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.

10. Another Divisibility Proof

Write an English proof to prove that if k is an odd integer, then $4 \mid k^{2}-1$.

