CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final Solutions

Name:			
UW ID:			

Instructions:

- This is a **simulated practice final**. You will **not** be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be an hour and 50 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.

1. All the Machines! [15 points]

Let the alphabet be $\Sigma = \{a,b\}$. Consider the language $L = \{w \in \Sigma^* : \text{every } a \text{ has a } b \text{ two characters later}\}$. In other words, L is the language of all strings in the alphabet a,b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include ε , abb, aabb, bbbbabb. Some strings not in L include a, ab, aab, ababb. Notice that the last two characters of the string cannot be an a.

(a) (5 points) Give a regular expression that represents L.

Solution:

 $(b \cup abb \cup aabb)^*$

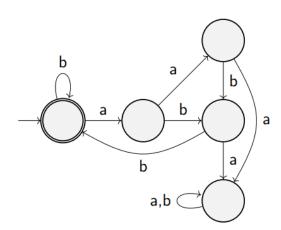
(b) (5 points) Give a CFG that represents L.

Solution:

 $\mathbf{S} \rightarrow b \mathbf{S} \mid aabb \mathbf{S} \mid abb \mathbf{S} \mid \varepsilon$

(c) (5 points) Give a DFA that represents ${\cal L}.$

Solution:



2. Induction 1 [20 points]

Recall the recursive definition of a list of integers:

- [] is the empty list
- If L is a list and a is an integer, then a::L is a list whose first element is a, followed by the elements of L.

Consider the following functions defined on lists:

$$\begin{split} & \operatorname{len}([\]) = 0 \\ & \operatorname{len}(x :: L) = 1 + \operatorname{len}(L) \\ & \operatorname{inc}([\]) = [\] \\ & \operatorname{inc}(x :: L) = (x+1) :: \operatorname{inc}(L) \\ & \operatorname{sum}([\]) = 0 \\ & \operatorname{sum}(x :: L) = x + \operatorname{sum}(L) \end{split}$$

Prove that for all lists L, sum(inc(L)) = sum(L) + len(L).

Solution:

Let P(L) be "sum(inc(L)) = sum(L) + len(L)". We prove that P(L) is true for all lists L by structural induction.

Base Case: $L = [\]$. Then:

$$\begin{split} \mathsf{sum}(\mathsf{inc}([\])) &= \mathsf{sum}([\]) \\ &= 0 \\ &= 0 + 0 \\ &= \mathsf{sum}([\]) + \mathsf{len}([\]) \end{split} \qquad \begin{aligned} &\mathsf{Definition\ of\ inc} \\ &\mathsf{Algebra} \\ &\mathsf{Definition\ of\ sum,\ len} \end{aligned}$$

Inductive Hypothesis: Suppose that P(L) is true for an arbitrary list L. **Inductive Step:** We aim to show that P(x::L) holds.

$$\begin{split} \operatorname{sum}(\operatorname{inc}(x::L)) &= \operatorname{sum}((x+1)::\operatorname{inc}(L)) & \operatorname{Definition \ of \ inc} \\ &= (x+1) + \operatorname{sum}(\operatorname{inc}(L)) & \operatorname{Definition \ of \ sum} \\ &= (x+1) + \operatorname{sum}(L) + \operatorname{len}(L) & \operatorname{Inductive \ Hypothesis} \\ &= x + \operatorname{sum}(L) + 1 + \operatorname{len}(L) & \operatorname{Algebra} \\ &= \operatorname{sum}(x::L) + \operatorname{len}(x::L) & \operatorname{Definition \ of \ sum, \ len} \end{split}$$

So P(x :: L) holds.

Conclusion: Thus P(L) holds for all lists L by structural induction.

3. Induction 2 [20 points]

Consider the following recursive definition of a_n :

$$a_1 = 1$$
 $a_2 = 1$
$$a_n = \frac{1}{2}(a_{n-1} + \frac{2}{a_{n-2}})$$
 for $n > 2$

Prove that $1 \le a_n \le 2$ for all integers $n \ge 1$.

Solution:

Define P(n) to be $1 \le a_n \le 2$. We prove P(n) holds for all integers $n \ge 1$ by strong induction.

Base Case P(1), P(2) Observe that $a_1=a_2=1$, and $1\leq 1\leq 2$. So P(1) and P(2) hold. Inductive Hypothesis: Suppose that P(j) is true for all $1\leq j\leq k$ for some arbitrary integer $k\geq 2$. Inductive Step:

$$\begin{split} a_{k+1} &= \frac{1}{2}(a_k + \frac{2}{a_{k-1}}) \\ &= \frac{a_k}{2} + \frac{1}{a_{k-1}}) \\ &\leq \frac{2}{2} + \frac{1}{a_{k-1}} \\ &\leq 1 + \frac{1}{1} \\ &= 2 \end{split} \qquad \text{By IH}$$

$$\begin{split} a_{k+1} &= \frac{1}{2}(a_k + \frac{2}{a_{k-1}}) \\ &= \frac{a_k}{2} + \frac{1}{a_{k-1}}) \\ &\geq \frac{1}{2} + \frac{1}{a_{k-1}} \\ &\geq \frac{1}{2} + \frac{1}{2} \\ &= 1 \end{split} \qquad \text{By IH}$$

So $1 \le a_{k+1} \le 2$.

Conclusion: Thus we have proven P(n) for all integers $n \ge 1$ by strong induction.

4.	Modular	Arithmetic	[10	points

(a) Prove or disprove: If $a \equiv b \pmod{10}$, then $a \equiv b \pmod{5}$. [5 points]

Solution:

True. Suppose that $a \equiv b \pmod{10}$. Then $10 \mid (a-b)$. Then there exists some integer k such that a-b=10k for some integer k. In particular, a-b=5(2k). Then $5 \mid (a-b)$. So $a \equiv b \pmod{5}$.

(b) Prove or disprove: If $a \equiv b \pmod{10}$, then $a \equiv b \pmod{20}$. [5 points]

Solution:

False. For example, for a=1 and b=11. Then $a\equiv b\pmod{10}$, but $a\not\equiv b\pmod{20}$.

5. Irregularity [20 points]

Prove that the set of strings $\{0^n10^n: n \ge 0\}$ is not regular.

Solution:

 $L=\{0^n10^n:n\geq 0\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\{0^n:n\geq 0\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are 0^i and 0^j for some $i,j\geq 0$ such that $i\neq j$. Append the string 10^i to both of these strings. The two resulting strings are:

 $a=0^i10^i$ Note that $a\in L$.

 $b = 0^j 10^i$ Note that $b \notin L$, since $i \neq j$.

Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.