## CSE 390Z: Mathematics of Computing

## Week 9 Workshop Solutions

## Conceptual Review

Relations definitions: Let $R$ be a relation on $A$. In other words, $R \subseteq A \times A$. Then:

- $R$ is reflexive iff for all $a \in A,(a, a) \in R$.
- $R$ is symmetric iff for all $a, b$, if $(a, b) \in R$, then $(b, a) \in R$.
- $R$ is antisymmetric iff for all $a, b$, if $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.
- $R$ is transitive iff for all $a, b$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Let $R, S$ be relations on $A$. Then:

- $R \circ S=\{(a, c): \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$


## 1. Relations Examples

(a) Suppose that $R, S$ are relations on the integers, where $R=\{(1,2),(4,3),(5,5)\}$ and $S=\{(2,5),(2,7),(3,3)\}$. What is $R \circ S$ ? What is $S \circ R$ ?

## Solution:

$R \circ S=\{(1,5),(1,7),(4,3)\}$
$S \circ R=\{(2,5)\}$
(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. List 3 pairs of integers that are in $R$, and 3 pairs of integers that are not.

## Solution:

In $R:(0,0),(1,0),(-1,0)$
Not in $R:(2,0),(3,0),(17,5)$
(c) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if $R$ is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

## Solution:

- Reflexive: Yes. For any integer $a$, it is true that $a \leq a+1$. So $(a, a) \in R$.
- Symmetric: No. For example, $(0,20) \in R$ but $(20,0) \notin R$.
- Antisymmetric: No. For example $(0,1) \in R$ and $(1,0) \in R$.
- Transitive: No. For example $(2,1) \in R$ and $(1,0) \in R$, but $(2,0) \notin R$.


## 2. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.
(a) Prove or disprove: If $R$ and $S$ are transitive, $R \cup S$ is transitive.

## Solution:

False. Let $R=\{(1,2)\}, S=\{(2,1)\}$. By definition, $R$ and $S$ are transitive. By definition of intersect, $R \cup S=\{(1,2),(2,1)\}$. However, if $R \cup S$ was transitive, we would require $(1,1)$ to be in $R \cup S$, because $(1,2)$ and $(2,1)$ is in $R \cup S$. However, this is not the case. Therefore the claim is false.
(b) Prove or disprove: If $R$ and $S$ are reflexive, then $R \circ S$ is reflexive.

## Solution:

True. Let $a \in \mathbb{Z}$ be arbitrary. Then $(a, a) \in R$ and $(a, a) \in S$ by definition of reflexive. Then $(a, a) \in R \circ S$. So $R \circ S$ is reflexive.
(c) Prove or disprove: If $R \circ S$ is reflexive, then $R$ and $S$ are reflexive.

## Solution:

False. Let $R=\{(a, a+1): a \in \mathbb{Z}\}$. In other words, $R=\{\ldots(-2,-1),(-1,0),(0,1),(1,2) \ldots\}$. Let $S=\{(a, a-1): a \in \mathbb{Z}\}$. In other words, $S=\{\ldots(-1,-2),(0,-1),(1,0),(2,1) \ldots\}$. Then for any arbitrary $a \in \mathbb{Z}$, we have $(a, a+1) \in R$ and $(a+1, a) \in S$. So $(a, a) \in R \circ S$. So $R \circ S$ is reflexive. Thus we have found an example where $R \circ S$ is reflexive, but $R$ and $S$ are not.
(d) Prove or disprove: If $R$ is symmetric, $\bar{R}$ (the complement of $R$ ) is symmetric.

## Solution:

True. Since $R$ is symmetric, we know the following.

$$
\forall a \forall b[(a, b) \in R \rightarrow(b, a) \in R]
$$

Taking the contrapositive, this is equivalent to:

$$
\forall a \forall b[(b, a) \notin R \rightarrow(a, b) \notin R]
$$

By the definition of complement, this is equivalent to:

$$
\forall a \forall b[(b, a) \in \bar{R} \rightarrow(a, b) \in \bar{R}]
$$

This is the definition of $\bar{R}$ being symmetric.

## 3. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings with an even number of $a$ 's $(\Sigma=\{a\})$.

## Solution:

DFA:

(b) Strings with an even number of $a$ 's or an odd number of $b$ 's $(\Sigma=\{a, b\})$.

## Solution:

DFA:

(c) Strings of $a$ 's and $b$ 's with odd length $(\Sigma=\{a, b\})$.

## Solution:

DFA:


