Conceptual Review
Space to take notes on Structural Induction, Regular Expressions, and CFGs:
1. Structural Induction x CFG Example
Consider the following CFG:

\[S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon \]

Prove that every string generated by this CFG has an equal number of 1's and 0's.

Hint: You may wish to define the functions \(\#_0(x) \), \(\#_1(x) \) on a string \(x \).

Solution:
First we observe that the language defined by this CFG can be represented by a recursively defined set. Define a set \(S \) as follows:

Basis Rule: \(\epsilon \in S \)

Recursive Rule: If \(x, y \in S \), then \(0x1, 1x0, xy \in S \).

Now we perform structural induction on the recursively defined set. Define the functions \(\#_0(t) \), \(\#_1(t) \) to be the number of 0's and 1's respectively in the string \(t \).

1. For a string \(t \), let \(P(t) \) be defined as "\(\#_0(t) = \#_1(t) \)". We will prove \(P(t) \) is true for all strings \(t \in S \) by structural induction.

2. **Base Case** \((t = \epsilon) \): By definition, the empty string contains no characters, so \(\#_0(\epsilon) = 0 = \#_1(\epsilon) \)

3. **Inductive Hypothesis:** Suppose \(P(x), P(y) \) hold for some arbitrary strings \(x, y \).

4. **Inductive Step:**
 - **Case 1:** Goal is to show \(P(0x1) \) holds.
 By the IH, \(\#_0(x) = \#_1(x) \). Then observe that:
 \[
 \#_0(0x1) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(0x1)
 \]
 Therefore \(\#_0(0x1) = \#_1(0x1) \). This proves \(P(0x1) \).

 - **Case 2:** Goal is to show \(P(1x0) \) holds.
 By the IH, \(\#_0(x) = \#_1(x) \). Then observe that:
 \[
 \#_0(1x0) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(1x0)
 \]
 Therefore \(\#_0(1x0) = \#_1(1x0) \). This proves \(P(1x0) \).

 - **Case 3:** Goal is to show \(P(xy) \) holds.
 By the IH, \(\#_0(x) = \#_1(x) \) and \(\#_0(y) = \#_1(y) \). Then observe that:
 \[
 \#_0(xy) = \#_0(x) + \#_0(y) = \#_1(x) + \#_1(y) = \#_1(xy)
 \]
 Therefore \(\#_0(xy) = \#_1(xy) \). This proves \(P(xy) \).

5. So by structural induction, \(P(t) \) is true for all strings \(t \in S \).
2. Context Free Grammars
Consider the following CFG which generates strings from the language \(V := \{0, 1, 2, 3, 4\}^* \)

\[
\begin{align*}
S & \rightarrow 0X4 \\
X & \rightarrow 1X3 \mid 2
\end{align*}
\]

List 5 strings generated by the CFG and 5 strings from \(V \) not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:
- 024
- 01234
- 0112334
- 011123334
- 01111233334

Rejected:
- \(\epsilon \)
- 2
- 0244
- 011234
- 10234

This CFG is all strings of the form \(0 \ 1^m \ 2 \ 3^m \ 4 \), where \(m \geq 0 \). That is, it’s all strings made of one 0, followed by zero or more 1’s, followed by a 2, followed by the same number of 3’s as 1’s, followed by one 4.

3. Constructing Languages
For each of the following, construct a regular expression and a CFG for the specified language.

(a) Strings from the language \(S := \{a\}^* \) with an even number of \(a \)'s.

Solution:

RegEx: \((aa)^*\)

CFG: \(S \rightarrow aaS | \epsilon \)

(b) Strings from the language \(S := \{a, b\}^* \) with odd length.

Solution:

\((aa \cup ab \cup ba \cup bb)^*(a \cup b)\)

CFG:

\[
\begin{align*}
S & \rightarrow CS|a|b \\
C & \rightarrow aaC|abC|baC|bbC|\epsilon
\end{align*}
\]

(c) (Challenge) Strings from the language \(S := \{a, b\}^* \) with an even number of \(a \)'s or an odd number of \(b \)'s.

Solution:

RegEx: \((b^*ab^*ab^*)^* \cup (a^* \cup a^*ba^*ba^*)^*b(a^* \cup a^*ba^*ba^*)^*\)
CFG:

\[S \rightarrow T \, | \, R \]
\[T \rightarrow B \, a \, B \, b \, T \, | \, \varepsilon \]
\[R \rightarrow A \, R \, A \, | \, \varepsilon \]
\[B \rightarrow b \, B \, | \, \varepsilon \]
\[A \rightarrow a \, A \, | \, a \, A \, b \, a \, A \, b \, a \, A \, | \, b \, a \, A \, b \, a \, A \, | \, a \, A \, b \, b \, A \, b \, A \, b \, A \, | \, b \, b \, A \, | \, b \, b \]
4. Structural Induction on Palindromes

Consider the following recursive definition of the set B of palindrome binary strings:

- **Base case:** $\varepsilon \in B$, $0 \in B$, $1 \in B$.
- **Recursive steps:**
 - If $s \in B$, then $0s0 \in E$, $1s1 \in B$, and $ss \in B$.

Now define the functions $\text{numOnes}(x)$ and $\text{numZeros}(x)$ to be the number of 1s and 0s respectively in the string x.

Use structural induction to prove that for any string $s \in B$, $\text{numOnes}(s) \cdot \text{numZeros}(s)$ is even.

Solution:

Proof. Define $P(n)$ to be "$2 \mid \text{numOnes}(s) \cdot \text{numZeros}(s)$". We will show $P(n)$ for all $n \in B$ by structural induction.

Base Cases:

- **Case 1:** $0s0$

 \[
 \text{numOnes}(0s0) \cdot \text{numZeros}(0s0) = (2 + \text{numZeros}(s)) \cdot \text{numOnes}(s) \quad \text{(Def. of numZeros, numOnes)}
 \]

 \[
 = 2 \cdot \text{numOnes}(s) + \text{numZeros}(s) \cdot \text{numOnes}(s)
 \]

 By the I.H., $2 \mid \text{numZeros}(s) \cdot \text{numOnes}(s)$, thus there is an integer k s.t. $\text{numZeros}(s) \cdot \text{numOnes}(s) = 2 \cdot k$. We can substitute this to get $2 \cdot \text{numOnes}(s) + 2 \cdot k$, which we can rearrange to get $2 \cdot (\text{numOnes}(s) + k)$, thus $2 \mid \text{numOnes}(0s0) \cdot \text{numZeros}(0s0)$ and $P(0s0)$ holds.

- **Case 2:** $1s1$

 \[
 \text{numOnes}(1s1) \cdot \text{numZeros}(1s1) = \text{numZeros}(s) \cdot (2 + \text{numOnes}(s)) \quad \text{(Def. of numZeros, numOnes)}
 \]

 \[
 = 2 \cdot \text{numZeros}(s) + \text{numZeros}(s) \cdot \text{numOnes}(s)
 \]

 By the I.H., $2 \mid \text{numZeros}(s) \cdot \text{numOnes}(s)$, thus there is an integer k s.t. $\text{numZeros}(s) \cdot \text{numOnes}(s) = 2 \cdot k$. We can substitute this to get $2 \cdot \text{numZeros}(s) + 2 \cdot k$, which we can rearrange to get $2 \cdot (\text{numZeros}(s) + k)$, thus $2 \mid \text{numOnes}(1s1) \cdot \text{numZeros}(1s1)$ and $P(1s1)$ holds.

- **Case 3:** ss

 \[
 \text{numOnes}(ss) \cdot \text{numZeros}(ss) = (2 \cdot \text{numOnes}(s)) \cdot (2 \cdot \text{numZeros}(s)) \quad \text{(Def. of numZeros, numOnes)}
 \]

 \[
 = 4 \cdot \text{numOnes}(s) \cdot \text{numZeros}(s)
 \]

 By the I.H., $2 \mid \text{numZeros}(s) \cdot \text{numOnes}(s)$, thus there is an integer k s.t. $\text{numZeros}(s) \cdot \text{numOnes}(s) = 2 \cdot k$. We can substitute this to get $4 \cdot 2 \cdot k = 2 \cdot (4 \cdot k)$, thus $2 \mid \text{numOnes}(ss) \cdot \text{numZeros}(ss)$ and $P(ss)$ holds.

Thus, $P(s)$ holds for all $s \in B$ by structural induction.
5. Relations
Suppose A is nonempty set and $R, S \subseteq A \times A$. The universe that A exists in is only integers.

(a) Prove or disprove: If R and S are reflexive, $R \cap S$ is reflexive.

Solution:
True. Suppose R and S are reflexive relations. Let $a \in A$ be arbitrary. Since R is reflexive, $(a, a) \in R$. Since S is reflexive, $(a, a) \in S$. Then by definition of intersect, $(a, a) \in R \cap S$. Since a was arbitrary, by definition of reflexive, $R \cap S$ is reflexive.

(b) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

Solution:
False. Let $A = \{1, 2\}$, $R = \{(1, 2)\}$, $S = \{(2, 1)\}$. By definition, R and S are transitive. By definition of intersect, $R \cup S = \{(1, 2), (2, 1)\}$. However, if $R \cup S$ was transitive I would expect $(1, 1)$ to be in $R \cup S$ because $(1, 2)$ and $(2, 1)$ is in $R \cup S$. However, this is not the case. Therefore the claim is false.

(c) Prove or disprove: If R is symmetric, \overline{R} is symmetric.

Solution:
True. Since R is symmetric, we know the following.

$$\forall a, \forall b, (a, b) \in R \rightarrow (b, a) \in R$$

Taking the contrapositive, this is equivalent to:

$$\forall a, \forall b, (b, a) \notin R \rightarrow (a, b) \notin R$$

By the definition of complement, this is equivalent to:

$$\forall a, \forall b, (b, a) \in \overline{R} \rightarrow (a, b) \in \overline{R}$$

This is the definition of \overline{R} being symmetric.