CSE 390Z: Mathematics of Computing

Week 8 Workshop Solutions

Conceptual Review

Space to take notes on Structural Induction, Regular Expressions, and CFGs:

1. Structural Induction \times CFG Example

Consider the following CFG:

$$
S \rightarrow S S|0 S 1| 1 S 0 \mid \epsilon
$$

Prove that every string generated by this CFG has an equal number of 1 's and 0 's.
Hint: You may wish to define the functions $\#_{0}(x), \#_{1}(x)$ on a string x.

Solution:

First we observe that the language defined by this CFG can be represented by a recursively defined set. Define a set S as follows:
Basis Rule: $\epsilon \in S$
Recursive Rule: If $x, y \in S$, then $0 x 1,1 x 0, x y \in S$.
Now we perform structural induction on the recursively defined set. Define the functions $\#_{0}(t), \#_{1}(t)$ to be the number of 0 's and 1 's respectively in the string t.

1 For a string t, let $\mathrm{P}(t)$ be defined as " $\#_{0}(t)=\#_{1}(t)$ ". We will prove $\mathrm{P}(t)$ is true for all strings $t \in S$ by structural induction.

2 Base Case $(t=\epsilon)$: By definition, the empty string contains no characters, so $\#_{0}(t)=0=\#_{1}(t)$
3 Inductive Hypothesis: Suppose $\mathrm{P}(x), \mathrm{P}(y)$ hold for some arbitrary strings x, y.

4 Inductive Step:

Case 1: Goal is to show $\mathrm{P}(0 x 1)$ holds.
By the $\mathrm{IH}, \#_{0}(x)=\#_{1}(x)$. Then observe that:

$$
\#_{0}(0 x 1)=\#_{0}(x)+1=\#_{1}(x)+1=\#_{1}(0 x 1)
$$

Therefore $\#_{0}(0 x 1)=\#_{1}(0 x 1)$. This proves $\mathrm{P}(0 x 1)$.

Case 2: Goal is to show $\mathrm{P}(1 x 0)$ holds.
By the $\mathrm{IH}, \#_{0}(x)=\#_{1}(x)$. Then observe that:

$$
\#_{0}(1 x 0)=\#_{0}(x)+1=\#_{1}(x)+1=\#_{1}(1 x 0)
$$

Therefore $\#_{0}(1 x 0)=\#_{1}(1 x 0)$. This proves $\mathrm{P}(1 x 0)$.
Case 3: Goal is to show $\mathrm{P}(x y)$ holds.
By the $\mathrm{IH}, \#_{0}(x)=\#_{1}(x)$ and $\#_{0}(y)=\#_{1}(y)$. Then observe that:

$$
\#_{0}(x y)=\#_{0}(x)+\#_{0}(y)=\#_{1}(x)+\#_{1}(y)=\#_{1}(x y)
$$

Therefore $\#_{0}(x y)=\#_{1}(x y)$. This proves $\mathrm{P}(x y)$.
5 So by structural induction, $\mathrm{P}(t)$ is true for all strings $t \in S$.

2. Context Free Grammars

Consider the following CFG which generates strings from the language $\mathrm{V}:=\{0,1,2,3,4\}^{*}$

$$
\begin{aligned}
& \mathbf{S} \rightarrow 0 \mathbf{X} 4 \\
& \mathbf{X} \rightarrow 1 \mathbf{X} 3 \mid 2
\end{aligned}
$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:

- 024
- 01234
- 0112334
- 011123334
- 01111233334

Rejected:

- ϵ
- 2
- 0244
- 011234
- 10234

This CFG is all strings of the form $01^{m} 23^{m} 4$, where $m \geq 0$. That is, it's all strings made of one 0 , followed by zero or more 1 's, followed by a 2 , followed by the same number of 3 's as 1 's, followed by one 4 .

3. Constructing Languages

For each of the following, construct a regular expression and a CFG for the specified language.
(a) Strings from the language $S:=\{a\}^{*}$ with an even number of a 's.

Solution:

RegEx: $(a a)^{*}$
CFG: $\mathbf{S} \rightarrow a a \mathbf{S} \mid \varepsilon$
(b) Strings from the language $S:=\{a, b\}^{*}$ with odd length.

Solution:

$(a a \cup a b \cup b a \cup b b)^{*}(a \cup b)$
CFG:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{C S}|a| b \\
& \mathbf{C} \rightarrow a a \mathbf{C}|a b \mathbf{C}| b a \mathbf{C}|b b \mathbf{C}| \varepsilon
\end{aligned}
$$

(c) (Challenge) Strings from the language $S:=\{a, b\}^{*}$ with an even number of a 's or an odd number of b 's.

Solution:

RegEx: $\left(b^{*} a b^{*} a b^{*}\right)^{*} \cup\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*} b\left(a^{*} \cup a^{*} b a^{*} b a^{*}\right)^{*}$

CFG:

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{T} \mid \mathbf{R} \\
& \mathbf{T} \rightarrow \mathbf{B} a \mathbf{B} a \mathbf{B T} \mid \varepsilon \\
& \mathbf{R} \rightarrow \mathbf{A R A} \mid \varepsilon \\
& \mathbf{B} \rightarrow b \mathbf{B} \mid \varepsilon \\
& \mathbf{A} \rightarrow a \mathbf{A}|a \mathbf{A} b a \mathbf{A} b a \mathbf{A}| b a \mathbf{A} b a \mathbf{A}|a \mathbf{A} b a \mathbf{A} b| a \mathbf{A} b b a \mathbf{A}|a \mathbf{A} b b| b \mathbf{A} b|b b \mathbf{A}| b b
\end{aligned}
$$

4. Structural Induction on Palindromes

Consider the following recursive defintion of the set B of palindrome binary strings:

- Base case: $\varepsilon \in B, 0 \in B, 1 \in B$.
- Recursive steps:
- If $s \in B$, then $0 s 0 \in E, 1 s 1 \in B$, and $s s \in B$.

Now define the functions numOnes (x) and numZeros (x) to be the number of 1 s and 0 s respectively in the string x.

Use structural induction to prove that for any string $s \in B$, numOnes $(s) \cdot \operatorname{numZeros}(s)$ is even.

Solution:

Proof. Define $\mathrm{P}(n)$ to be " $2 \mid$ numOnes $(s) \cdot n u m Z e r o s(s)$ ". We will show $\mathrm{P}(n)$ for all $n \in B$ by structural induction.

Base Cases:

- $s=\varepsilon:$ numOnes $(\varepsilon) \cdot \operatorname{numZeros}(\varepsilon)=0 \cdot 0=0=2 \cdot 0$, thus $\mathrm{P}(\varepsilon)$ holds.
- $s=0$: numOnes $(0) \cdot \operatorname{numZeros}(0)=0 \cdot 1=0=2 \cdot 0$, thus $\mathrm{P}(0)$ holds.
- $s=1$: numOnes $(1) \cdot \operatorname{numZeros}(1)=1 \cdot 0=0=2 \cdot 0$, thus $\mathrm{P}(1)$ holds.

Inductive Hypothesis: Suppose $\mathrm{P}(s)$ holds for an arbitrary string $s \in B$. Inductive Step:

- Case 1: $0 s 0$

$$
\begin{aligned}
\operatorname{numOnes}(0 s 0) \cdot \operatorname{numZeros}(0 s 0) & =(2+\operatorname{numZeros}(s)) \cdot \operatorname{numOnes}(s) \quad \text { (Def. of numZeros, numOnes) } \\
& =2 \cdot \operatorname{numOnes}(s)+\operatorname{numZeros}(s) \cdot \operatorname{numOnes}(s)
\end{aligned}
$$

By the I.H., $2 \mid$ numZeros $(s) \cdot n u m O n e s(s)$, thus there is an integer k s.t. numZeros $(s) \cdot n u m O n e s(s)=2 \cdot k$. We can substitute this to get $2 \cdot$ numOnes $(s)+2 \cdot k$, which we can rearrange to get $2 \cdot($ numOnes $(s)+k)$, thus $2 \mid$ numOnes $(0 s 0) \cdot n u m Z e r o s(0 s 0)$ and $\mathrm{P}(0 s 0)$ holds.

- Case 2: $1 s 1$

$$
\begin{aligned}
\text { numOnes }(1 s 1) \cdot \operatorname{numZeros}(1 s 1) & =\operatorname{numZeros}(s) \cdot(2+\operatorname{numOnes}(s)) \quad(\text { Def. of numZeros, numOnes) } \\
& =2 \cdot \operatorname{numZeros}(s)+\operatorname{numZeros}(s) \cdot \operatorname{numOnes}(s)
\end{aligned}
$$

By the I.H., $2 \mid$ numZeros $(s) \cdot n u m O n e s(s)$, thus there is an integer k s.t. numZeros $(s) \cdot n u m O n e s(s)=2 \cdot k$. We can substitute this to get $2 \cdot \operatorname{numZeros}(s)+2 \cdot k$, which we can rearrange to get $2 \cdot($ numZeros $(s)+k)$, thus $2 \mid$ numOnes $(1 s 1) \cdot n u m Z e r o s(1 s 1)$ and $\mathrm{P}(1 s 1)$ holds.

- Case 3: ss

$$
\begin{aligned}
\operatorname{numOnes}(s s) \cdot \operatorname{numZeros}(s s) & =(2 \cdot \operatorname{numOnes}(s)) \cdot(2 \cdot \operatorname{numZeros}(s)) \quad(\text { Def. of numZeros, numOnes }) \\
& =4 \cdot \operatorname{numOnes}(s) \cdot \operatorname{numZeros}(s)
\end{aligned}
$$

By the I.H., $2 \mid$ numZeros $(s) \cdot n u m O n e s(s)$, thus there is an integer k s.t. numZeros $(s) \cdot n u m O n e s(s)=2 \cdot k$. We can substitute this to get $4 \cdot 2 \cdot k=2 \cdot(4 \cdot k)$, thus $2 \mid$ numOnes $(s s) \cdot$ numZeros $(s s)$ and $\mathrm{P}(s s)$ holds.

Thus, $\mathrm{P}(s)$ holds for all $s \in B$ by structural induction.

5. Relations

Suppose A is nonempty set and $R, S \subset A \times A$. The universe that A exists in is only integers.
(a) Prove or disprove: If R and S are reflexive, $R \cap S$ is reflexive.

Solution:

True. Suppose R and S are reflexive relations. Let $a \in A$ be arbitrary. Since R is reflexive, $(a, a) \in R$. Since S is reflexive, $(a, a) \in S$. Then by definition of intersect, $(a, a) \in R \cap S$. Since a was arbitrary, by definition of reflexive, $R \cap S$ is reflexive.
(b) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

Solution:

False. Let $A=\{1,2\}, R=\{(1,2)\}, S=\{(2,1)\}$. By definition, R and S are transitive. By definition of intersect, $R \cup S=\{(1,2),(2,1)\}$. However, if $R \cup S$ was transitive I would expect $(1,1)$ to be in $R \cup S$ because $(1,2)$ and $(2,1)$ is in $R \cup S$. However, this is not the case. Therefore the claim is false.
(c) Prove or disprove: If R is symmetric, \bar{R} is symmetric.

Solution:

True. Since R is symmetric, we know the following.

$$
\forall a, \forall b,(a, b) \in R \rightarrow(b, a) \in R
$$

Taking the contrapositive, this is equivalent to:

$$
\forall a, \forall b,(b, a) \notin R \rightarrow(a, b) \notin R
$$

By the definition of complement, this is equivalent to:

$$
\forall a, \forall b,(b, a) \in \bar{R} \rightarrow(a, b) \in \bar{R}
$$

This is the definition of \bar{R} being symmetric.

