CSE 390Z: Mathematics of Computing

Week 8 Workshop Solutions

Conceptual Review

Space to take notes on Structural Induction, Regular Expressions, and CFGs:

1. Structural Induction x CFG Example

Consider the following CFG:

$$S \to SS \mid 0S1 \mid 1S0 \mid \epsilon$$

Prove that every string generated by this CFG has an equal number of 1's and 0's.

Hint: You may wish to define the functions $\#_0(x), \#_1(x)$ on a string x.

Solution:

First we observe that the language defined by this CFG can be represented by a recursively defined set. Define a set S as follows:

Basis Rule: $\epsilon \in S$

Recursive Rule: If $x, y \in S$, then $0x1, 1x0, xy \in S$.

Now we perform structural induction on the recursively defined set. Define the functions $\#_0(t), \#_1(t)$ to be the number of 0's and 1's respectively in the string t.

- 1 For a string t, let P(t) be defined as " $\#_0(t) = \#_1(t)$ ". We will prove P(t) is true for all strings $t \in S$ by structural induction.
- 2 Base Case $(t = \epsilon)$: By definition, the empty string contains no characters, so $\#_0(t) = 0 = \#_1(t)$
- 3 **Inductive Hypothesis:** Suppose P(x), P(y) hold for some arbitrary strings x, y.

4 Inductive Step:

Case 1: Goal is to show P(0x1) holds. By the IH, $\#_0(x) = \#_1(x)$. Then observe that:

$$\#_0(0x1) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(0x1)$$

Therefore $\#_0(0x1) = \#_1(0x1)$. This proves P(0x1).

Case 2: Goal is to show P(1x0) holds.

By the IH, $\#_0(x) = \#_1(x)$. Then observe that:

$$\#_0(1x0) = \#_0(x) + 1 = \#_1(x) + 1 = \#_1(1x0)$$

Therefore $\#_0(1x0) = \#_1(1x0)$. This proves P(1x0).

Case 3: Goal is to show P(xy) holds. By the IH, $\#_0(x) = \#_1(x)$ and $\#_0(y) = \#_1(y)$. Then observe that:

$$\#_0(xy) = \#_0(x) + \#_0(y) = \#_1(x) + \#_1(y) = \#_1(xy)$$

Therefore $\#_0(xy) = \#_1(xy)$. This proves P(xy).

5 So by structural induction, P(t) is true for all strings $t \in S$.

2. Context Free Grammars

Consider the following CFG which generates strings from the language $\mathsf{V}:=\{0,1,2,3,4\}^*$

$$\begin{array}{l} \mathbf{S} \rightarrow 0\mathbf{X}4 \\ \mathbf{X} \rightarrow 1\mathbf{X}3 \mid 2 \end{array}$$

List 5 strings generated by the CFG and 5 strings from V not generated by the CFG. Then, summarize this CFG in your own words.

Solution:

Accepted:

- Rejected:
- 024
 01234
 ε
- 0112334
 0244
 011123334
 011234
 10234
- This CFG is all strings of the form $0 \ 1^m \ 2 \ 3^m \ 4$, where $m \ge 0$. That is, it's all strings made of one 0, followed by zero or more 1's, followed by a 2, followed by the same number of 3's as 1's, followed by one 4.

3. Constructing Languages

For each of the following, construct a regular expression and a CFG for the specified language.

(a) Strings from the language $S := \{a\}^*$ with an even number of a's.

Solution:

RegEx: $(aa)^*$

CFG: $\mathbf{S} \rightarrow aa\mathbf{S}|\varepsilon$

(b) Strings from the language $S := \{a, b\}^*$ with odd length.

Solution:

 $(aa \cup ab \cup ba \cup bb)^*(a \cup b)$ CFG:

$$\begin{split} \mathbf{S} &\to \mathbf{CS}|a|b\\ \mathbf{C} &\to aa\mathbf{C}|ab\mathbf{C}|ba\mathbf{C}|bb\mathbf{C}|\varepsilon \end{split}$$

(c) (Challenge) Strings from the language $S := \{a, b\}^*$ with an even number of a's or an odd number of b's.

Solution:

RegEx: $(b^*ab^*ab^*)^* \cup (a^* \cup a^*ba^*ba^*)^*b(a^* \cup a^*ba^*ba^*)^*$

CFG:

$$\begin{split} \mathbf{S} &\to \mathbf{T} | \mathbf{R} \\ \mathbf{T} &\to \mathbf{B} a \mathbf{B} a \mathbf{B} \mathbf{T} | \varepsilon \\ \mathbf{R} &\to \mathbf{A} \mathbf{R} \mathbf{A} | \varepsilon \\ \mathbf{B} &\to b \mathbf{B} | \varepsilon \\ \mathbf{A} &\to a \mathbf{A} | a \mathbf{A} b a \mathbf{A} b a \mathbf{A} | b a \mathbf{A} b a \mathbf{A} | a \mathbf{A} b a \mathbf{A} | a \mathbf{A} b b a \mathbf{A} | b \mathbf{A} b | b \mathbf{b} \mathbf{A} | b b \end{split}$$

4. Structural Induction on Palindromes

Consider the following *recursive* defintion of the set B of palindrome binary strings:

- Base case: $\varepsilon \in B$, $0 \in B$, $1 \in B$.
- Recursive steps:

- If $s \in B$, then $0s0 \in E$, $1s1 \in B$, and $ss \in B$.

Now define the functions numOnes(x) and numZeros(x) to be the number of 1s and 0s respectively in the string x.

Use *structural induction* to prove that for any string $s \in B$, numOnes $(s) \cdot$ numZeros(s) is even.

Solution:

Proof. Define P(n) to be "2 | numOnes $(s) \cdot numZeros(s)$ ". We will show P(n) for all $n \in B$ by structural induction.

Base Cases:

- $s = \varepsilon$: numOnes (ε) · numZeros $(\varepsilon) = 0 \cdot 0 = 0 = 2 \cdot 0$, thus P (ε) holds.
- s = 0: numOnes(0) · numZeros(0) = 0 · 1 = 0 = 2 · 0, thus P(0) holds.
- s = 1: numOnes(1) · numZeros(1) = 1 · 0 = 0 = 2 · 0, thus P(1) holds.

Inductive Hypothesis: Suppose P(s) holds for an arbitrary string $s \in B$. Inductive Step:

• Case 1: 0s0

 $numOnes(0s0) \cdot numZeros(0s0) = (2 + numZeros(s)) \cdot numOnes(s)$ (Def. of numZeros, numOnes) = 2 \cdot numOnes(s) + numZeros(s) \cdot numOnes(s)

By the I.H., $2 \mid \mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s)$, thus there is an integer k s.t. $\mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s) = 2 \cdot k$. We can substitute this to get $2 \cdot \mathsf{numOnes}(s) + 2 \cdot k$, which we can rearrange to get $2 \cdot (\mathsf{numOnes}(s) + k)$, thus $2 \mid \mathsf{numOnes}(0s0) \cdot \mathsf{numZeros}(0s0)$ and $\mathsf{P}(0s0)$ holds.

• Case 2: 1s1

 $numOnes(1s1) \cdot numZeros(1s1) = numZeros(s) \cdot (2 + numOnes(s))$ (Def. of numZeros, numOnes) = 2 \cdot numZeros(s) + numZeros(s) \cdot numOnes(s)

By the I.H., $2 \mid \mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s)$, thus there is an integer k s.t. $\mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s) = 2 \cdot k$. We can substitute this to get $2 \cdot \mathsf{numZeros}(s) + 2 \cdot k$, which we can rearrange to get $2 \cdot (\mathsf{numZeros}(s) + k)$, thus $2 \mid \mathsf{numOnes}(1s1) \cdot \mathsf{numZeros}(1s1)$ and $\mathsf{P}(1s1)$ holds.

• Case 3: *ss*

 $numOnes(ss) \cdot numZeros(ss) = (2 \cdot numOnes(s)) \cdot (2 \cdot numZeros(s))$ (Def. of numZeros, numOnes) = 4 \cdot numOnes(s) \cdot numZeros(s)

By the I.H., $2 \mid \mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s)$, thus there is an integer k s.t. $\mathsf{numZeros}(s) \cdot \mathsf{numOnes}(s) = 2 \cdot k$. We can substitute this to get $4 \cdot 2 \cdot k = 2 \cdot (4 \cdot k)$, thus $2 \mid \mathsf{numOnes}(ss) \cdot \mathsf{numZeros}(ss)$ and $\mathsf{P}(ss)$ holds.

Thus, P(s) holds for all $s \in B$ by structural induction.

5. Relations

Suppose A is nonempty set and $R, S \subset A \times A$. The universe that A exists in is only integers.

(a) Prove or disprove: If R and S are reflexive, $R \cap S$ is reflexive.

Solution:

True. Suppose R and S are reflexive relations. Let $a \in A$ be arbitrary. Since R is reflexive, $(a, a) \in R$. Since S is reflexive, $(a, a) \in S$. Then by definition of intersect, $(a, a) \in R \cap S$. Since a was arbitrary, by definition of reflexive, $R \cap S$ is reflexive.

(b) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.

Solution:

False. Let $A = \{1, 2\}$, $R = \{(1, 2)\}$, $S = \{(2, 1)\}$. By definition, R and S are transitive. By definition of intersect, $R \cup S = \{(1, 2), (2, 1)\}$. However, if $R \cup S$ was transitive I would expect (1, 1) to be in $R \cup S$ because (1, 2) and (2, 1) is in $R \cup S$. However, this is not the case. Therefore the claim is false.

(c) Prove or disprove: If R is symmetric, \overline{R} is symmetric.

Solution:

True. Since R is symmetric, we know the following.

$$\forall a, \forall b, (a, b) \in R \to (b, a) \in R$$

Taking the contrapositive, this is equivalent to:

 $\forall a, \forall b, (b, a) \notin R \to (a, b) \notin R$

By the definition of complement, this is equivalent to:

$$\forall a, \forall b, (b, a) \in \overline{R} \to (a, b) \in \overline{R}$$

This is the definition of \overline{R} being symmetric.