
CSE 390Z: Mathematics of Computing
Week 7 Workshop Solutions

Conceptual Review
Space to take notes on strong and structural induction:
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1. Strong Induction: Collecting Candy
A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P (3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n ≥ 18. Use strong induction on n to prove this.

Hint: you’ll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:

1 Let P(n) be defined as "You are able to buy n packs of candy". We will prove P (n) is true for all integers
n ≥ 18 by strong induction.

2 Base Cases (n = 18, 19, 20, 21):

• n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 = 2 ∗ 7 + 1 ∗ 4).
• n = 19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 = 1 ∗ 7 + 3 ∗ 4).
• n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5 ∗ 4).
• n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 = 3 ∗ 7).

3 Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 21, P(j) is true for 18 ≤ j ≤ k.

4 Inductive Step:

Goal: Show P (k + 1), i.e. show that we can buy k + 1 packs of candy.

We want to buy k+1 packs of candy. By the I.H., we can buy exactly k−3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k−3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that k − 3 ≥ 18. Adding 3 to
both sides, we needed to be able to assume that k ≥ 21. So, we have to prove the base cases up to 21,
that is: 18, 19, 20, 21.
Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to k − 3 in
the IS, so we needed 4 base cases.

5 So by strong induction, P(n) is true for all integers n ≥ 18.
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2. Structural Induction: Dictionaries
Consider the following definition for a Dictionary (known in some languages as a Map):

• [] is the empty dictionary

• If D is a dictionary, and a and b are elements of the universe, then (a → b) :: D is a dictionary that maps
a to b (in addition to the content of D).

Now, define the following programs on a dictionary:

AllKeys([]) = [] len([]) = 0

AllKeys((a → b) :: D) = a :: AllKeys(D) len((a → b) :: D) = 1 + len(D)

Prove that len(D) = len(AllKeys(D)).

Solution:
Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to
show P(D) for all dictionaries D.
Base Case: D = []: Note that:

len(D) = len([])

= 0 [Definition of len]
= len([]) [Definition of len]
= len(AllKeys([])) [Definition of AllKeys]
= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C.
Inductive Step:
Let D’ = (a → b) :: C. Note that:

len((a → b) :: C) = 1 + len(C) [Definition of Len]
= 1 + len(AllKeys(C)) [IH]
= len(a :: AllKeys(C)) [Definition of Len]
= len(AllKeys((a → b) :: C)) [Definition of AllKeys]

So P(D’) holds.
Thus, the claim holds for all dictionaries D by structural induction.
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3. Strong Induction: Functions
Consider the function f(n) defined for integers n ≥ 1 as follows:
f(1) = 1 for n = 1
f(2) = 4 for n = 2
f(3) = 9 for n = 3
f(n) = f(n− 1)− f(n− 2) + f(n− 3) + 2(2n− 3) for n ≥ 4

Prove by strong induction that for all n ≥ 1, f(n) = n2.
Solution:

1 Let P(n) be defined as " f(n) = n2". We will prove P (n) is true for all integers n ≥ 1 by strong induction.

2 Base Cases (n = 1, 2, 3):

• n = 1: f(1) = 1 = 12.
• n = 2: f(2) = 4 = 22.
• n = 3: f(3) = 9 = 32

So the base cases hold.

3 Inductive Hypothesis: Suppose for some arbitrary integer k ≥ 3, P(j) is true for 1 ≤ j ≤ k.

4 Inductive Step:

Goal: Show P (k + 1), i.e. show that f(k + 1) = (k + 1)2.

f(k + 1) = f(k + 1− 1)− f(k + 1− 2) + f(k + 1− 3) + 2(2(k + 1)− 3) Definition of f
= f(k)− f(k − 1) + f(k − 2) + 2(2k − 1)

= k2 − (k − 1)2 + (k − 2)2 + 2(2k − 1) By IH
= k2 − (k2 − 2k + 1) + (k2 − 4k + 4) + 4k − 2

= (k2 − k2 + k2) + (2k − 4k + 4k) + (−1 + 4− 2)

= k2 + 2k + 1

= (k + 1)2

So P(k + 1) holds.

5 Conclusion: So by strong induction, P(n) is true for all integers n ≥ 1.
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4. Structural Induction: Lists
Consider the following recursive definition for a List:

• [] is the empty list

• If L is a list, and a is an element of the universe, then a :: L is a list that has the first element a followed
by the elements in L.

For example, 2 :: [] is the list [2], and 1 :: 2 :: 3 :: [] is the list [1,2,3]. Define the following recursive
functions:

all(x, []) = [], all(x, y :: L) = if x = y then y :: all(x, L) else all(x, L)
removeAll(x, []) = [], removeAll(x, y :: L) = if x = y then removeAll(x, L) else y :: removeAll(x, L)
len([]) = 0, len(a :: L) = 1 + len(L)

Prove len(removeAll(x, L)) = len(L)− len(all(x, L)).

Solution:
Proof. Define P(L) := len(removeAll(x, L)) = len(L)− len(all(x, L)) for all x ∈ X. We prove P(L) for all Lists
L by structural induction.
Base Case: L = []. Note that

len(removeAll(x, [])) = len([]) [Definition of removeAll]
= len([])− 0

= len([])− len([]) Definition of len]
= len([])− len(all(x, [])) [Definition of all]

So the P(L) holds for L = [].
Inductive Hypothesis: Suppose P(K) holds for some arbitrary List K.
Inductive Step:
Suppose L’ = y :: K. Then len(removeAll(x, L’)) = len(removeAll(x, y :: K)).

• First, consider the case where x = y:

len(removeAll(x, y :: K)) = len(removeAll(x,K)) [Definition of removeAll]
= len(K)− len(all(x,K)) [IH]
= 1 + len(K)− (1 + len(all(x,K))) [Arithmetic]
= len(y :: K)− (1 + len(all(x,K))) [Definition of len]
= len(y :: K)− (len(y :: all(x,K))) [Definition of len]
= len(y :: K)− (len(all(x, y :: K))) [Definition of all, x = y]
= len(L’)− (len(all(x, L’))) [Definition of L’]

So the claim holds when x = y.

• Now consider when x 6= y:

len(removeAll(x, y :: K)) = len(y :: removeAll(x,K)) [Definition of removeAll]
= 1 + len(removeAll(x,K)) [Definition of len]
= 1 + len(K)− len(all(x,K)) [IH]
= len(y :: K)− len(all(x,K)) [Definition of len]
= len(y :: K)− (len(all(x, y :: K))) [Definition of all, x 6= y]
= len(L’)− (len(all(x, L’)))

So the claim holds when x 6= y.
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So the claim holds no matter the relation between x and y, so P(L’) holds.
Conclusion: Thus, the claim holds for all lists L by structural induction.
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5. Strong Induction: Cards on the Table
I’ve come up with a new card game that is played between 2 players as follows. We start with some integer
n ≥ 1 cards on the table. The two players then take turns removing cards from the table; in a single turn,
a player can choose to remove either 1 or 2 cards from the table. A player wins by taking the last card. For
example:

The person I’ve been playing with has been very careful about dealing the cards, and keeps winning; I think
they know something I don’t about this game. I want to use induction to prove that if 3|n, the second player
(P2) can guarantee a win, and if n is not divisible by 3, the first player (P1) can guarantee a win.

(a) How many base cases does this proof need? What should they be?

Solution:
3 base cases; 1, 2, and 3 cards.

(b) Use strong induction to prove that if 3|n, P2 can guarantee a win, and if n is not divisible by 3, P1 can
guarantee a win.

Solution:
Proof. Let Q(n) be defined as "if 3|n, P2 can guarantee a win, and if n is not divisible by 3, P1 can
guarantee a win". We will show Q(n) holds for all integers n ≥ 1 by strong induction.
Base Cases:

• n = 1: P1 can take 1 card and win, and 1 is not divisible by 3, so Q(1) holds.
• n = 2: P1 can take 2 cards and win, and 2 is not divisible by 3, so Q(1) holds.
• n = 3: If P1 takes 1 card, P2 can take 2 cards and win. If P1 takes 2 cards, P2 can take 1 card

and win. Since 3|3, Q(3) holds.

Inductive Hypothesis: Suppose Q(j) holds for all 1 ≤ j ≤ k for an arbitrary integer k ≥ 3.
Inductive Step:

• case 1: 3|k + 1
By definition, k + 1 = 3x for some integer x. If P1 takes 1 card, P2 can take 2 cards, leaving
k − 2 = 3(x − 1) cards for the next round. If P1 takes 2 cards, P1 can take 1 card, also leaving
k − 2 = 3(x− 1) cards for the next round. Since 3|k − 2, by the Inductive Hypothesis P2 can win
with k − 2 cards, thus P2 can win with k + 1 cards and Q(k + 1) holds.

• case 2: k + 1 is not divisible by 3
Either k + 1 ≡3 1 or k + 1 ≡3 2. If k + 1 ≡3 1, then P1 can take 1 card, leaving k cards where
3|k, thus k = 3x for some integer x. If k + 1 ≡3 2, then P1 can take 2 card, leaving k cards where
3|k, thus k = 3x for some integer x. P2 can then take 1 card or 2 cards, leaving k − 1 = 3x− 1 or
k − 2 = 3x− 2 cards left, neither of which are divisible by 3. By the Inductive Hypothesis, P1 can
always win with in either case, thus P1 can always win with k + 1 cards and Q(k + 1) holds.

Thus, we have shown that Q(n) holds for all integers n ≥ 1 by strong induction.
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