CSE 390Z: Mathematics of Computing

Week 7 Workshop Solutions

Conceptual Review

Space to take notes on strong and structural induction:

1. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

Solution:

1 Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". We will prove $P(n)$ is true for all integers $n \geq 18$ by strong induction.

2 Base Cases $(n=18,19,20,21)$:

- $n=18: 18$ packs of candy can be made up of 2 packs of 7 and 1 pack of $4(18=2 * 7+1 * 4)$.
- $n=19: 19$ packs of candy can be made up of 1 pack of 7 and 3 packs of $4(19=1 * 7+3 * 4)$.
- $n=20$: 20 packs of candy can be made up of 5 packs of $4(20=5 * 4)$.
- $n=21: 21$ packs of candy can be made up of 3 packs of $7(21=3 * 7)$.

3 Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 21, \mathrm{P}(j)$ is true for $18 \leq j \leq k$.

4 Inductive Step:

Goal: Show $P(k+1)$, i.e. show that we can buy $k+1$ packs of candy.
We want to buy $k+1$ packs of candy. By the I.H., we can buy exactly $k-3$ packs, so we can add another pack of 4 packs in order to buy $k+1$ packs of candy, so $\mathrm{P}(k+1)$ is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume $\mathrm{P}(k-3)$, and add 4 to achieve $\mathrm{P}(k+1)$. Therefore we needed to be able to assume that $k-3 \geq 18$. Adding 3 to both sides, we needed to be able to assume that $k \geq 21$. So, we have to prove the base cases up to 21 , that is: $18,19,20,21$.

Another way to think about this is that we had to use a fact from 4 steps back from $k+1$ to $k-3$ in the IS, so we needed 4 base cases.

5 So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 18$.

2. Structural Induction: Dictionaries

Consider the following definition for a Dictionary (known in some languages as a Map):

- [] is the empty dictionary
- If D is a dictionary, and a and b are elements of the universe, then $(a \rightarrow b):: \mathrm{D}$ is a dictionary that maps a to b (in addition to the content of D).

Now, define the following programs on a dictionary:

$$
\begin{array}{llrr}
\text { AllKeys }([]) & =[] & \operatorname{len}([]) & =0 \\
\text { AllKeys }((a \rightarrow b):: \mathrm{D}) & =a:: \operatorname{AllK} \operatorname{Keys}(\mathrm{D}) & \operatorname{len}((a \rightarrow b):: \mathrm{D}) & =1+\operatorname{len}(\mathrm{D})
\end{array}
$$

Prove that len $(\mathrm{D})=\operatorname{len}(\operatorname{AllKeys}(\mathrm{D}))$.

Solution:

Proof. Define $\mathrm{P}(\mathrm{D})$ to be len $(\mathrm{D})=\operatorname{len}(\operatorname{AllKeys}(\mathrm{D}))$ for a Dictionary D . We will go by structural induction to show $P(D)$ for all dictionaries D.
Base Case: $D=[]$: Note that:

$$
\begin{aligned}
\operatorname{len}(\mathrm{D}) & =\operatorname{len}([]) & & \\
& =0 & & \text { [Definition of len }] \\
& =\operatorname{len}([]) & & \text { [Definition of len }] \\
& =\operatorname{len}(\operatorname{AllK} \operatorname{Keys}([])) & & \text { [Definition of AllKeys] } \\
& =\operatorname{len}(\text { AllKeys }(D)) & &
\end{aligned}
$$

Inductive Hypothesis: Suppose $\mathrm{P}(\mathrm{C})$ to be true for an arbitrary dictionary C .

Inductive Step:

Let $\mathrm{D}^{\prime}=(a \rightarrow b)::$ C. Note that:

$$
\begin{align*}
\operatorname{len}((a \rightarrow b):: \mathrm{C}) & =1+\operatorname{len}(\mathrm{C}) & & \text { [Definition of Len] } \\
& =1+\operatorname{len}(\operatorname{AllKeys}(\mathrm{C})) & & {[\mathrm{H}] } \tag{H}\\
& =\operatorname{len}(a:: \operatorname{AllKeys}(\mathrm{C})) & & {[\text { Definition of Len] }} \\
& =\operatorname{len}(\operatorname{AllKeys}((a \rightarrow b):: \mathrm{C})) & & {[\text { [Definition of AllKeys] }}
\end{align*}
$$

So $P\left(D^{\prime}\right)$ holds.
Thus, the claim holds for all dictionaries D by structural induction.

3. Strong Induction: Functions

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

Solution:

1 Let $\mathrm{P}(n)$ be defined as " $f(n)=n^{2 "}$. We will prove $P(n)$ is true for all integers $n \geq 1$ by strong induction.
2 Base Cases ($n=1,2,3$):

- $n=1: f(1)=1=1^{2}$.
- $n=2: f(2)=4=2^{2}$.
- $n=3: f(3)=9=3^{2}$

So the base cases hold.
3 Inductive Hypothesis: Suppose for some arbitrary integer $k \geq 3, \mathrm{P}(j)$ is true for $1 \leq j \leq k$.

4 Inductive Step:

Goal: Show $P(k+1)$, i.e. show that $f(k+1)=(k+1)^{2}$.

$$
\begin{aligned}
f(k+1) & =f(k+1-1)-f(k+1-2)+f(k+1-3)+2(2(k+1)-3) & & \text { Definition of } \mathrm{f} \\
& =f(k)-f(k-1)+f(k-2)+2(2 k-1) & & \\
& =k^{2}-(k-1)^{2}+(k-2)^{2}+2(2 k-1) & & \\
& =k^{2}-\left(k^{2}-2 k+1\right)+\left(k^{2}-4 k+4\right)+4 k-2 & & \\
& =\left(k^{2}-k^{2}+k^{2}\right)+(2 k-4 k+4 k)+(-1+4-2) & & \\
& =k^{2}+2 k+1 & & \\
& =(k+1)^{2} & &
\end{aligned}
$$

So $\mathrm{P}(k+1)$ holds.
5 Conclusion: So by strong induction, $\mathrm{P}(n)$ is true for all integers $n \geq 1$.

4. Structural Induction: Lists

Consider the following recursive definition for a List:

- [] is the empty list
- If L is a list, and a is an element of the universe, then $a:: \mathrm{L}$ is a list that has the first element a followed by the elements in L.

For example, $2::$ [] is the list [2], and $1:: 2:: 3::[]$ is the list $[1,2,3]$. Define the following recursive functions:

$$
\begin{array}{llr}
\operatorname{all}(x,[]) & =[], & \operatorname{all}(x, y:: \mathrm{L})=\text { if } x=y \text { then } y:: \operatorname{all}(x, \mathrm{~L}) \text { else } \operatorname{all}(x, \mathrm{~L}) \\
\operatorname{removeAll}(x,[]) & =[], & \text { removeAll }(x, y:: \mathrm{L})=\text { if } x=y \text { then removeAll }(x, \mathrm{~L}) \text { else } y:: \operatorname{removeAll}(x, \mathrm{~L}) \\
\operatorname{len}([]) & =0, & \operatorname{len}(a:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})
\end{array}
$$

$\operatorname{Prove} \operatorname{len}(\operatorname{removeAll}(x, \mathrm{~L}))=\operatorname{len}(\mathrm{L})-\operatorname{len}(\operatorname{all}(x, \mathrm{~L}))$.

Solution:

Proof. Define $\mathrm{P}(L):=\operatorname{len}($ removeAll $(x, \mathrm{~L}))=\operatorname{len}(\mathrm{L})-\operatorname{len}(\operatorname{all}(x, \mathrm{~L}))$ for all $x \in X$. We prove $\mathrm{P}(L)$ for all Lists L by structural induction.
Base Case: L = []. Note that

$$
\begin{aligned}
\operatorname{len}(\operatorname{removeAll}(x,[])) & =\operatorname{len}([]) & & \text { [Definition of rem } \\
& =\operatorname{len}([])-0 & & \\
& =\operatorname{len}([])-\operatorname{len}([]) & & \text { Definition of len] } \\
& =\operatorname{len}([])-\operatorname{len}(\operatorname{all}(x,[])) & & \text { [Definition of all] }
\end{aligned}
$$

So the $\mathrm{P}(L)$ holds for $\mathrm{L}=[]$.
Inductive Hypothesis: Suppose $\mathrm{P}(K)$ holds for some arbitrary List K. Inductive Step:
Suppose $\mathrm{L}^{\prime}=y:: \mathrm{K}$. Then len(removeAll $\left.\left(x, \mathrm{~L}^{\prime}\right)\right)=\operatorname{len}(\operatorname{removeAll}(x, y:: \mathrm{K}))$.

- First, consider the case where $x=y$:

$$
\begin{align*}
\operatorname{len}(\operatorname{removeAll}(x, y:: \mathrm{K})) & =\operatorname{len}(\operatorname{removeAll}(x, \mathrm{~K})) & & \text { [Definition of removeAII] } \\
& =\operatorname{len}(\mathrm{K})-\operatorname{len}(\operatorname{all}(x, \mathrm{~K})) & & {[\mathrm{H}] } \tag{IH}\\
& =1+\operatorname{len}(\mathrm{K})-(1+\operatorname{len}(\operatorname{all}(x, \mathrm{~K}))) & & \text { [Arithmetic] } \\
& =\operatorname{len}(y:: \mathrm{K})-(1+\operatorname{len}(\operatorname{all}(x, \mathrm{~K}))) & & \text { [Definition of len] } \\
& =\operatorname{len}(y:: \mathrm{K})-(\operatorname{len}(y:: \operatorname{all}(x, \mathrm{~K}))) & & \text { [Definition of len] } \\
& =\operatorname{len}(y:: \mathrm{K})-(\operatorname{len}(\operatorname{all}(x, y:: \mathrm{K}))) & & \text { [Definition of all, } x=y \text {] } \\
& =\operatorname{len}\left(\mathrm{L}^{\prime}\right)-\left(\operatorname{len}\left(\operatorname{all}\left(x, \mathrm{~L}^{\prime}\right)\right)\right) & & \text { [Definition of } \left.\mathrm{L}^{\prime}\right]
\end{align*}
$$

So the claim holds when $x=y$.

- Now consider when $x \neq y$:

$$
\begin{aligned}
\operatorname{len}(\operatorname{removeAll}(x, y:: \mathrm{K})) & =\operatorname{len}(y:: \text { removeAll }(x, \mathrm{~K})) & & \text { [Definition of removeAll] } \\
& =1+\operatorname{len}(\operatorname{removeAll}(x, \mathrm{~K})) & & \text { [Definition of len] } \\
& =1+\operatorname{len}(\mathrm{K})-\operatorname{len}(\operatorname{all}(x, \mathrm{~K})) & & {[\mathrm{IH}] } \\
& =\operatorname{len}(y:: \mathrm{K})-\operatorname{len}(\operatorname{all}(x, \mathrm{~K})) & & \text { [Definition of len] } \\
& =\operatorname{len}(y:: \mathrm{K})-(\operatorname{len}(\operatorname{all}(x, y:: \mathrm{K}))) & & \text { [Definition of all, } x \neq y] \\
& =\operatorname{len}\left(\mathrm{L}^{\prime}\right)-\left(\operatorname{len}\left(\operatorname{all}\left(x, \mathrm{~L}^{\prime}\right)\right)\right) & &
\end{aligned}
$$

So the claim holds when $x \neq y$.

So the claim holds no matter the relation between x and y, so $\mathrm{P}\left(\mathrm{L}^{\prime}\right)$ holds.
Conclusion: Thus, the claim holds for all lists L by structural induction.

5. Strong Induction: Cards on the Table

I've come up with a new card game that is played between 2 players as follows. We start with some integer $n \geq 1$ cards on the table. The two players then take turns removing cards from the table; in a single turn, a player can choose to remove either 1 or 2 cards from the table. A player wins by taking the last card. For example:

The person I've been playing with has been very careful about dealing the cards, and keeps winning; I think they know something I don't about this game. I want to use induction to prove that if $3 \mid n$, the second player (P2) can guarantee a win, and if n is not divisible by 3, the first player (P1) can guarantee a win.
(a) How many base cases does this proof need? What should they be?

Solution:

3 base cases; 1, 2, and 3 cards.
(b) Use strong induction to prove that if $3 \mid n, \mathrm{P} 2$ can guarantee a win, and if n is not divisible by $3, \mathrm{P} 1$ can guarantee a win.

Solution:

Proof. Let $\mathrm{Q}(\mathrm{n})$ be defined as "if $3 \mid n$, P 2 can guarantee a win, and if n is not divisible by 3, P1 can guarantee a win". We will show $\mathrm{Q}(\mathrm{n})$ holds for all integers $n \geq 1$ by strong induction.
Base Cases:

- $\mathbf{n}=1$: $P 1$ can take 1 card and win, and 1 is not divisible by 3 , so $Q(1)$ holds.
- $\mathbf{n}=2$: $P 1$ can take 2 cards and win, and 2 is not divisible by 3 , so $Q(1)$ holds.
- $\mathbf{n}=3$: If P1 takes 1 card, P2 can take 2 cards and win. If P1 takes 2 cards, P2 can take 1 card and win. Since $3 \mid 3, Q(3)$ holds.

Inductive Hypothesis: Suppose $\mathrm{Q}(\mathrm{j})$ holds for all $1 \leq j \leq k$ for an arbitrary integer $k \geq 3$. Inductive Step:

- case 1: $3 \mid k+1$

By definition, $k+1=3 x$ for some integer x. If P1 takes 1 card, P 2 can take 2 cards, leaving $k-2=3(x-1)$ cards for the next round. If P1 takes 2 cards, P1 can take 1 card, also leaving $k-2=3(x-1)$ cards for the next round. Since $3 \mid k-2$, by the Inductive Hypothesis P2 can win with $k-2$ cards, thus P 2 can win with $k+1$ cards and $\mathrm{Q}(k+1)$ holds.

- case 2 : $k+1$ is not divisible by 3

Either $k+1 \equiv_{3} 1$ or $k+1 \equiv_{3} 2$. If $k+1 \equiv_{3} 1$, then P1 can take 1 card, leaving k cards where $3 \mid k$, thus $k=3 x$ for some integer x. If $k+1 \equiv_{3} 2$, then P1 can take 2 card, leaving k cards where $3 \mid k$, thus $k=3 x$ for some integer x. P2 can then take 1 card or 2 cards, leaving $k-1=3 x-1$ or $k-2=3 x-2$ cards left, neither of which are divisible by 3 . By the Inductive Hypothesis, P1 can always win with in either case, thus P 1 can always win with $k+1$ cards and $\mathrm{Q}(k+1)$ holds.

Thus, we have shown that $\mathrm{Q}(n)$ holds for all integers $n \geq 1$ by strong induction.

