CSE 390Z: Mathematics of Computing

Week 7 Workshop Solutions

Conceptual Review
Space to take notes on strong and structural induction:



1. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7. Let P(n) be defined as "You are able to buy n packs of candy".
For example, P(3) is not true, because you cannot buy exactly 3 packs of candy from the store. However, it
turns out that P(n) is true for any n > 18. Use strong induction on 7 to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your
inductive step.
Solution:
1 Let P(n) be defined as "You are able to buy n packs of candy". We will prove P(n) is true for all integers
n > 18 by strong induction.

2 Base Cases (n = 18,19, 20,21):

» n = 18: 18 packs of candy can be made up of 2 packs of 7 and 1 pack of 4 (18 =2 %7+ 1x4).
» n =19: 19 packs of candy can be made up of 1 pack of 7 and 3 packs of 4 (19 =1% 7+ 3x4).
» n = 20: 20 packs of candy can be made up of 5 packs of 4 (20 = 5% 4).
» n = 21: 21 packs of candy can be made up of 3 packs of 7 (21 =3 7).

3 Inductive Hypothesis: Suppose for some arbitrary integer k > 21, P(j) is true for 18 < j < k.

4 Inductive Step:

Goal: Show P(k + 1), i.e. show that we can buy k£ + 1 packs of candy.

We want to buy £+ 1 packs of candy. By the I.H., we can buy exactly k — 3 packs, so we can add another
pack of 4 packs in order to buy k + 1 packs of candy, so P(k + 1) is true.

Note: How did we decide how many base cases to have? Well, we wanted to be able to assume P(k — 3),
and add 4 to achieve P(k + 1). Therefore we needed to be able to assume that £ — 3 > 18. Adding 3 to
both sides, we needed to be able to assume that £ > 21. So, we have to prove the base cases up to 21,
that is: 18,19, 20, 21.

Another way to think about this is that we had to use a fact from 4 steps back from k + 1 to kK — 3 in
the IS, so we needed 4 base cases.

5 So by strong induction, P(n) is true for all integers n > 18.



2. Structural Induction: Dictionaries
Consider the following definition for a Dictionary (known in some languages as a Map):
= [] is the empty dictionary

» If D is a dictionary, and a and b are elements of the universe, then (a — b) :: D is a dictionary that maps
a to b (in addition to the content of D).

Now, define the following programs on a dictionary:

AllKeys([]) = len([]1) =0
AllKeys((a — b) :: D) = a:: AllKeys(D) len((a — b) :: D) =1+ len(D)

Prove that len(D) = len(AllKeys(D)).

Solution:

Proof. Define P(D) to be len(D) = len(AllKeys(D)) for a Dictionary D. We will go by structural induction to
show P(D) for all dictionaries D.

Base Case: D = []: Note that:

len(D) = len([])

=0 [Definition of len]
= len([1) [Definition of len]
= len(AllKeys([])) [Definition of AllKeys]

= len(AllKeys(D))

Inductive Hypothesis: Suppose P(C) to be true for an arbitrary dictionary C.
Inductive Step:
Let D' = (a — b) :: C. Note that:

len((a — b) :: C) =1+ len(C) [Definition of Len]
=1+ len(AllKeys(C)) [IH]
= len(a :: AllKeys(C)) [Definition of Len]
= len(AllKeys((a — b) :: C)) [Definition of AllKeys]

So P(D’) holds.
Thus, the claim holds for all dictionaries D by structural induction. O



3. Strong Induction: Functions

Consider the function f(n) defined for integers n > 1 as follows:
fl)y=1forn=1

f(2)=4forn=2

fB)=9forn=3
fm)=fn=1)—fn—2)+ f(n —3)+2(2n —3) forn > 4

Prove by strong induction that for all n > 1, f(n) = n?.
Solution:
1 Let P(n) be defined as " f(n) = n". We will prove P(n) is true for all integers n > 1 by strong induction.

2 Base Cases (n =1,2,3):

»n=1: f(1)=1=12%
= n=2: f(2)=4=2%
» n=23: f(3)=9=3

So the base cases hold.
3 Inductive Hypothesis: Suppose for some arbitrary integer k > 3, P(j) is true for 1 < j < k.

4 Inductive Step:

Goal: Show P(k + 1), i.e. show that f(k+1) = (k+1)2

fle+1)=fk+1—-1)—f(k+1-2)+ f(k+1-3)+2(2(k+1)—3)  Definition of f
=f(k) = f(k=1)+ f(k—2)+2(2k - 1)
=k — (k- 1%+ (k—2)2+2(2k - 1) By IH
=k?— (k* =2k + 1)+ (k* — 4k + 4) + 4k — 2
= (K2 — k24 k) + 2k —dk +4k) + (-1 +4—2)
=k +2k+1
= (k+1)?

So P(k + 1) holds.

5 Conclusion: So by strong induction, P(n) is true for all integers n > 1.



4. Structural Induction: Lists
Consider the following recursive definition for a List:
= [] is the empty list

= |f Lis alist, and a is an element of the universe, then a :: L is a list that has the first element a followed
by the elements in L.

For example, 2 :: [1 is the list [2], and 1 :: 2 :: 3 :: [] is the list [1,2,3]. Define the following recursive
functions:

all(z, [1) = [1, all(z,y :: L) = if x = y then y :: all(z, L) else all(x, L)
removeAll(z, [1) = [1, removeAll(z,y :: L) = if x = y then removeAll(x, L) else y :: removeAll(x, L)
len([]) =0, len(a :: L) =1+ len(L)

Prove len(removeAll(z, L)) = len(L) — len(all(x, L)).

Solution:

Proof. Define P(L) := len(removeAll(z,L)) = len(L) — len(all(z, L)) for all z € X. We prove P(L) for all Lists
L by structural induction.

Base Case: L = []. Note that

len(removeAll(z, [1)) = len([1) [Definition of removeAll]
=len([1)—0
=len([1) —len([1) Definition of len]
=len([1) — len(all(x, [1)) [Definition of all]

So the P(L) holds for L = [1].

Inductive Hypothesis: Suppose P(K') holds for some arbitrary List K.
Inductive Step:

Suppose L' =y :: K. Then len(removeAll(z,L")) = len(removeAll(z, y :: K)).

= First, consider the case where z = y:

len(removeAll(x, y :: K)) = len(removeAll(z, K)) [Definition of removeAll]
= len(K) — len(all(z, K)) [IH]
=1+ len(K) — (1 + len(all(z, K))) [Arithmetic]
=len(y = K)—(1+ Ien(all(az7 K))) [Definition of len]
= len(y :: K) — (len(y :: all(z, K))) [Definition of len]
len(y :: K) — (Ien(all(x,y K))) [Definition of all, x = y]
len(L") — (len(all(z,L"))) [Definition of L']
So the claim holds when z = y.
= Now consider when x # y:
len(removeAll(z,y :: K)) = len(y :: removeAll(z, K)) [Definition of removeAll]
= 1+ len(removeAll(z, K)) [Definition of len]
=1+ len(K) — len(all(z, K)) [IH]
= len(y :: K) — len(all(z, K)) [Definition of len]
= len(y :: K) — (len(all(z, y :: K))) [Definition of all, z # y]
= len(L") — (len(all(x, L")))

So the claim holds when = # y.



So the claim holds no matter the relation between = and y, so P(L") holds.
Conclusion: Thus, the claim holds for all lists L by structural induction.



5. Strong Induction: Cards on the Table

I've come up with a new card game that is played between 2 players as follows. We start with some integer
n > 1 cards on the table. The two players then take turns removing cards from the table; in a single turn,
a player can choose to remove either 1 or 2 cards from the table. A player wins by taking the last card. For
example:

Pl P2 Pl
—_— —_— EEE— You win!
take 2 take 1 take 2

The person I've been playing with has been very careful about dealing the cards, and keeps winning; | think
they know something | don't about this game. | want to use induction to prove that if 3|n, the second player
(P2) can guarantee a win, and if n is not divisible by 3, the first player (P1) can guarantee a win.

(a)

How many base cases does this proof need? What should they be?

Solution:

3 base cases; 1, 2, and 3 cards.

Use strong induction to prove that if 3|n, P2 can guarantee a win, and if n is not divisible by 3, P1 can
guarantee a win.

Solution:

Proof. Let Q(n) be defined as "if 3|n, P2 can guarantee a win, and if n is not divisible by 3, P1 can
guarantee a win". We will show Q(n) holds for all integers n > 1 by strong induction.

Base Cases:

» n = 1: P1 can take 1 card and win, and 1 is not divisible by 3, so Q(1) holds.
» n = 2: P1 can take 2 cards and win, and 2 is not divisible by 3, so Q(1) holds.

= n = 3: If P1 takes 1 card, P2 can take 2 cards and win. If P1 takes 2 cards, P2 can take 1 card
and win. Since 3|3, Q(3) holds.

Inductive Hypothesis: Suppose Q(j) holds for all 1 < j < k for an arbitrary integer k > 3.
Inductive Step:

» case 1: 3|k +1
By definition, kK + 1 = 3x for some integer x. If P1 takes 1 card, P2 can take 2 cards, leaving
k —2 = 3(xz — 1) cards for the next round. If P1 takes 2 cards, P1 can take 1 card, also leaving
k —2 = 3(x — 1) cards for the next round. Since 3|k — 2, by the Inductive Hypothesis P2 can win
with k& — 2 cards, thus P2 can win with k£ + 1 cards and Q(k + 1) holds.

= case 2: k+ 1 is not divisible by 3
Either k+1=31ork+1=32. If k+1=31, then P1 can take 1 card, leaving k cards where
3|k, thus k = 3x for some integer z. If k 4+ 1 =3 2, then P1 can take 2 card, leaving k cards where
3|k, thus k = 3z for some integer x. P2 can then take 1 card or 2 cards, leaving k —1 =3z — 1 or
k — 2 = 3z — 2 cards left, neither of which are divisible by 3. By the Inductive Hypothesis, P1 can
always win with in either case, thus P1 can always win with k& 4 1 cards and Q(k + 1) holds.

Thus, we have shown that Q(n) holds for all integers n > 1 by strong induction. O



