CSE 390Z: Mathematics for Computation Workshop

Practice 311 Midterm Solutions

Name:			
UW ID:			

Instructions:

- This is a **simulated practice midterm**. You will **not** be graded on your performance on this exam.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam, totaling 90 points.

1. Predicate Translation [15 points]

Let the domain of discourse be novels, comic books, movies, and TV shows. Translate the following statements to predicate logic, using the following predicates:

Novel(x) := x is a novel Comic(x) := x is a comic book Movie(x) := x is a movie Show(x) := x is a TV show Adaptation(x, y) := x is an adaptation of y

(a) (5 points) A novel cannot be adapted into both a movie and a TV show.

Solution:

```
\forall x (\mathsf{Novel}(x) \to \forall m \forall s ((\mathsf{Movie}(m) \land \mathsf{Show}(s)) \to \neg (\mathsf{Adaptation}(m, x) \land \mathsf{Adaptation}(s, x)))
```

(b) (5 points) Every movie is an adaptation of a novel or a comic book.

Solution:

$$\forall m(\mathsf{Movie}(m) \to \exists x(\mathsf{Adaptation}(m, x) \land (\mathsf{Novel}(x) \lor \mathsf{Comic}(x))))$$

(c) (5 points) Every novel has been adapted into exactly one movie.

Solution:

$$\forall x (\mathsf{Novel}(x) \to \exists m (\mathsf{Movie}(m) \land \mathsf{Adaptation}(m, x) \land \forall n ((\mathsf{Movie}(n) \land (n \neq m)) \to \neg \mathsf{Adaptation}(n, x)))) \\ \mathsf{OR} \\ \forall x (\mathsf{Novel}(x) \to \exists m (\mathsf{Movie}(m) \land \mathsf{Adaptation}(m, x) \land \forall n (\mathsf{Adaptation}(n, x) \to (\neg \mathsf{Movie}(n) \lor n = m)))) \\ \mathsf{OR} \\ \forall x (\mathsf{Novel}(x) \to \exists m (\mathsf{Movie}(m) \land \mathsf{Adaptation}(m, x) \land \forall n ((\mathsf{Adaptation}(n, x) \land \mathsf{Movie}(n)) \to (n = m)))) \\$$

^{*}Note that a great exercise is to show that the above 3 solutions are all logically equivalent :)

2. Circuits [15 points]

The boolean function f takes in three inputs x_1, x_2, x_3 (where each is a 0 or 1 value), and outputs 1 if $(x_1 * x_2) + x_3$ is even, and 0 otherwise.

(a) (5 points) Draw a truth table for f.

Solution:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1
			'

(b) (5 points) Write f as a sum-of-products expression.

Solution:

$$x_1x_2x_3 + x_1x_2'x_3' + x_1'x_2x_3' + x_1'x_2'x_3'$$

(c) (5 points) Write f as a products-of-sums expression.

Solution:

$$(x'_1 + x'_2 + x_3)(x'_1 + x_2 + x'_3)(x_1 + x'_2 + x'_3)(x_1 + x_2 + x'_3)$$

3. Number Theory Proof [20 points]

Recall this definition of odd: $\mathrm{Odd}(x) := \exists y (x=2y+1)$. Write an English proof to show that for all odd integers k, the statement $8 \mid k^2-1$ holds.

Hint: At some point in your proof, you'll need to show that for any integer a, a(a+1) is even. When you reach this point, feel free to break your proof up into the case where a is even, and the case where a is odd.

Solution:

Let k be an arbitrary odd integer. Then k = 2a + 1 for some integer a. Then $k^2 - 1 = (2a + 1)^2 - 1 = 4a^2 + 4a + 1 - 1 = 4a^2 + 4a = 4a(a + 1)$.

Consider the case where a is odd. Then a=2b+1 for some integer b. Then $k^2-1=4a(a+1)=4(2b+1)(2b+2)=8(2b+1)(b+1)$. By closure of integers under multiplication and addition, $k^2-1=8c$ for an integer c. Thus in this case, $8\mid k^2-1$.

Consider the case where a is even. Then a=2b for some integer b. Then $k^2-1=4a(a+1)=4(2b)(2b+1)=8b(2b+1)$. By closure of integers under multiplication and addition, $k^2-1=8c$ for an integer c. Thus in this case, $8\mid k^2-1$.

So in all cases, $8 \mid k^2 - 1$. Since k was an arbitrary odd integer, we have proved the claim.

4. Set Proof [20 points]

Suppose that for sets A,B,C, the facts $A\subseteq B$ and $B\subseteq C$ are given. Write an English proof to show that $B\times A\subseteq C\times C$.

Solution:

Suppose that for sets A,B,C, we have $A\subseteq B$ and $B\subseteq C$ (these are our givens). Let $x\in B\times A$ be arbitrary. Then by definition of Cartesian Product, x=(y,z) for $y\in B$ and $z\in A$. Then since $y\in B$ and $B\subseteq C$, $y\in C$. Similarly since $z\in A$ and $A\subseteq B$, $z\in B$. Then since $z\in B$ and $B\subseteq C$, we have $z\in C$. Therefore we have shown that $y\in C$ and $z\in C$. Then by definition of Cartesian Product, $x\in C\times C$. Since x was arbitrary, we have shown $B\times A\subseteq C\times C$.

5. Induction [20 points]

Prove by induction that $3^n - 1$ is divisible by 2 for any integer $n \ge 1$.

Solution:

- 1. Let P(n) be the statement " $3^n 1$ is divisible by 2". We prove P(n) for all integers $n \ge 1$ by induction.
- 2. Base Case: When n = 1, $3^n 1 = 3^1 1 = 3 1 = 2$. Since $2 \mid 2$, the base case holds.
- 3. Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer $k \ge 1$. Then $2 \mid 3^k 1$. Then by definition of divides, there exists some integer a such that $3^k 1 = 2a$.
- 4. Inductive Step: Observe that...

$$3^{k+1}-1=3(3^k)-1 \qquad \qquad \text{Definition of Exponent}$$

$$=3(3^k-1+1)-1 \qquad \qquad \text{Subtract and Add by 1}$$

$$=3(2a+1)-1 \qquad \qquad \text{By IH}$$

$$=6a+3-1 \qquad \qquad \text{Algebra}$$

$$=6a+2 \qquad \qquad \text{Algebra}$$

$$=2(3a+1) \qquad \qquad \text{Algebra}$$

Thus by definition of divides, $2 \mid 3^{k+1} - 1$. So P(k+1) holds.

5. Thus we have proven P(n) for all integers $n \ge 1$ by induction.