Week 3 Workshop Solutions

Name: \qquad
Collaborators: \qquad

Conceptual Review

(a) What are the inference rules?

$$
\begin{array}{ll}
\text { Solution: } \\
\text { Introduce } \vee: & \frac{A}{\therefore A \vee B, B \vee A} \\
\text { Eliminate } \vee: & \frac{A \vee B ; \neg A}{\therefore B} \\
\text { Introduce } \wedge: & \frac{A ; B}{\therefore A \wedge B} \\
\text { Eliminate } \wedge: & \frac{A \wedge B}{\therefore A, B} \\
\text { Direct Proof: } & \frac{A \rightarrow B}{\therefore A \rightarrow B} \\
\text { Modus Ponens: } & \frac{A ; A \rightarrow B}{\therefore B} \\
\text { Intro } \exists: & \frac{P(c) \text { for some } c}{\therefore \exists x P(x)} \\
\text { Eliminate } \exists: & \frac{\exists x P(x)}{\therefore P(c) \text { for a fresh } c} \\
\text { Intro } \forall: & \frac{P(a) ; a \text { is arbitrary }}{\therefore \forall x P(x)} \\
\text { Eliminate } \forall: & \frac{\forall x P(x)}{\therefore P(a) ; a \text { is arbitrary }}
\end{array}
$$

(b) Given $A \wedge B$, prove $A \vee B$ Given $P \rightarrow R, R \rightarrow S$, prove $P \rightarrow S$.

Solution:

1. $A \wedge B$ (Given)
2. $A(E \operatorname{Elim} \wedge: 1$.
3. $A \vee B$ (Intro $\vee: 2$.)
4. $P \rightarrow R$ (Given)
5. $R \rightarrow S$ (Given)
3.1 P (Assumption)
3.2 R (Modus Ponens: 3.1, 1)
3.3 S (Modus Ponens: 3.2, 2)
6. $P \rightarrow S$ (Direct Proof Rule; 3.1-3.3)
(c) How do you prove a "for all" statement? E.g. prove $\forall x P(x)$

Solution:

Show that for any arbitrary a in the domain, $P(a)$ holds.
(d) How do you prove a "there exists" statement? E.g. prove $\exists x P(x)$

Solution:

Show that for some specific a in the domain, $P(a)$ holds.

1. Tricky Translations

Translate the following English sentences to predicate logic. The domain is integers, and you may use $=, \neq$, and $>$ as predicates. Assume the predicates Prime, Composite, and Even have been defined appropriately.
(a) 2 is prime.

Solution:

Prime(2)
(b) Every positive integer is prime or composite, but not both.

Solution:

$$
\begin{aligned}
& \forall x((x>0) \rightarrow(\operatorname{Prime}(x) \oplus \operatorname{Composite}(x))) \\
& \text { OR } \\
& \forall x((x>0) \rightarrow[(\operatorname{Prime}(x) \wedge \neg \operatorname{Composite}(x)) \vee(\neg \operatorname{Prime}(x) \wedge \text { Composite }(x))])
\end{aligned}
$$

(c) There is exactly one even prime.

Solution:

$$
\begin{aligned}
& \exists x((\operatorname{Even}(x) \wedge \operatorname{Prime}(x) \wedge \forall y[(\operatorname{Even}(y) \wedge \operatorname{Prime}(y)) \rightarrow(y=x)]) \\
& \text { OR } \\
& \exists x((\operatorname{Even}(x) \wedge \operatorname{Prime}(x) \wedge \forall y[(y \neq x) \rightarrow \neg(\operatorname{Even}(y) \wedge \operatorname{Prime}(y))])
\end{aligned}
$$

(d) 2 is the only even prime.

Solution:

$$
\forall x((x=2) \leftrightarrow \operatorname{Prime}(x) \wedge \operatorname{Even}(x))
$$

2. Formal Proofs: Modus Ponens

(a) Prove that given $p \rightarrow q, \neg s \rightarrow \neg q$, and p, we can conclude s.

Solution:

1. $p \rightarrow q$
2. $\neg s \rightarrow \neg q$
3. p
4. q
5. $q \rightarrow s$
6. s
(b) Prove that given $\neg(p \vee q) \rightarrow s, \neg p$, and $\neg s$, we can conclude q.

Solution:

1. $\neg(p \vee q) \rightarrow s$
(Given)
2. $\neg p$
3. $\neg s$
4. $\neg s \rightarrow \neg \neg(p \vee q)$
(Contrapositive; 1)
5. $\neg s \rightarrow(p \vee q)$ (Double Negation; 4)
6. $p \vee q$ (Modus Ponens; 3,5)
7. q
(Elim $\vee ; 6,2$)

3. Formal Proofs: Direct Proof Rule

(a) Prove that given $p \rightarrow q$, we can conclude $(p \wedge r) \rightarrow q$

Solution:

1. $p \rightarrow q$
$2.1 p \wedge r$
(Assumption)
$2.2 p$
(Elim $\wedge ; 2.1)$
$2.3 q$
(Modus Ponens; 2.2, 1.)
2. $(p \wedge r) \rightarrow q$
(b) Prove that given $p \vee q, q \rightarrow r$, and $r \rightarrow s$, we can conclude $\neg p \rightarrow s$.

Solution:

1. $p \vee q$
2. $q \rightarrow r$
3. $r \rightarrow s$
$4.1 \neg p$
(Assumption)
$4.2 q$
(Elim $\vee ; 1,4.1$)
$4.3 r$
(Modus Ponens; 4.2, 2)
4.4 s
(Modus Ponens; 4.3, 3)
4. $\neg p \rightarrow s$

4. Predicate Logic Formal Proof

(a) Prove that $\forall x P(x) \rightarrow \exists x P(x)$. You may assume that the domain is nonempty.

Solution:

1.1. $\forall x P(x)$
(Assumption)
1.2. $P(a)$
(Elim $\forall: 1.1)$
1.3. $\exists x P(x)$
(Intro $\exists: 1.2$)

1. $\forall x P(x) \rightarrow \exists x P(x)$
(Direct Proof Rule, from 1.1-1.3)
(b) Given $\forall x(T(x) \rightarrow M(x))$ and $\exists x(T(x))$, prove that $\exists x(M(x))$.

Solution:

1. $\forall x(T(x) \rightarrow M(x))$
2. $\exists x(T(x))$

Let r be the object that satisfies $T(r)$
3. $T(r)$
(\exists elimination, from 2)
4. $T(r) \rightarrow M(r)$
(\forall elimination, from 1)
5. $M(r)$
(Modus ponens, from 3 and 4)
6. $\exists x(M(x))$
(c) Given $\forall x(P(x) \rightarrow Q(x))$, prove that $(\exists x P(x)) \rightarrow(\exists y Q(y))$.

Solution:

1. $\forall x(P(x) \rightarrow Q(x))$
(Given)
2.1. $\exists x(P(x))$
(Assumption)
Let r be the object that satisfies $P(r)$
2.2. $P(r)$
(\exists elimination, from 2.1)
2.3. $P(r) \rightarrow Q(r)$
(\forall elimination, from 1)
2.4. $Q(r)$
(Modus Ponens, from 2.2 and 2.3)
2.5. $\exists y(Q(y))$
(\exists introduction, from 2.4)
2. $(\exists x P(x)) \rightarrow(\exists y Q(y))$

5. Predicate Logic Formal Proof: Oddly Even

Write a formal proof to show: If n, m are odd, then $n+m$ is even.
Let the predicates $\operatorname{Odd}(x)$ and $\operatorname{Even}(x)$ be defined as follows where the domain of discourse is integers:

$$
\begin{gathered}
\operatorname{Odd}(x):=\exists y(x=2 y+1) \\
\operatorname{Even}(x):=\exists y(x=2 y)
\end{gathered}
$$

Solution:

1. Let x be an arbitrary integer.
2. Let y be an arbitrary integer.
3.1. $\operatorname{Odd}(x) \wedge \operatorname{Odd}(y) \quad$ [Assumption]
3.2. $\operatorname{Odd}(x) \quad$ [Elim $\wedge: 3.1]$
3.3. $\exists k(x=2 k+1) \quad$ [Definition of Odd, 3.2]
3.4. $x=2 k+1 \quad$ [Elim \exists : 3.3]
3.5. $\operatorname{Odd}(y) \quad[E \lim \wedge: 3.1]$
3.6. $\exists k(y=2 k+1) \quad$ [Definition of Odd, 3.5]
3.7. $y=2 j+1 \quad$ [Elim \exists : 3.7]
3.8. $x+y=2 k+1+2 j+1 \quad$ [Algebra: $3.4,3.7]$
3.9. $x+y=2(k+j+1) \quad$ [Algebra: 3.8]
3.10. $\exists r(x+y=2 r) \quad$ [Intro $\exists: 3.9]$
3.11. Even $(x+y) \quad$ [Definition of Even, 3.10]
3. $\quad \operatorname{Odd}(x) \wedge \operatorname{Odd}(y) \rightarrow \operatorname{Even}(x+y)$
[Direct Proof Rule]
4. $\quad \forall m(\operatorname{Odd}(x) \wedge \operatorname{Odd}(m) \rightarrow \operatorname{Even}(x+m)) \quad$ [Intro $\forall: 2,3]$
5. $\forall n \forall m(\operatorname{Odd}(n) \wedge \operatorname{Odd}(m) \rightarrow \operatorname{Even}(n+m)) \quad$ [Intro $\forall: 1,4]$

6. More Formal Proofs: Predicate Logic!

Given $\forall x(P(x) \vee Q(x))$ and $\forall y(\neg Q(y) \vee R(y))$, prove $\exists x(P(x) \vee R(x))$. You may assume that the domain is not empty.

Solution:

$$
\begin{array}{rll}
\text { 1. } & \forall x(P(x) \vee Q(x)) & \text { [Given] } \\
\text { 2. } & \forall y(\neg Q(y) \vee R(y)) & \text { [Given] } \\
\text { 3. } & P(a) \vee Q(a) & \text { [Elim } \forall: \text { 1] } \\
4 . & \neg Q(a) \vee R(a) & \text { [Elim } \forall: 2 \text {] } \\
\text { 5. } & Q(a) \rightarrow R(a) & \text { [Law of Implication: 4] } \\
\text { 6. } & \neg \neg P(a) \vee Q(a) & \text { [Double Negation: 3] } \\
\text { 7. } & \neg P(a) \rightarrow Q(a) & \text { [Law of Implication: 5] } \\
& 8.1 . \quad \neg P(a) & \text { [Assumption] } \\
& 8.2 . \quad Q(a) \quad \text { [Modus Ponens: 8.1, 7] } & \\
& 8.3 . \quad R(a) \quad \text { [Modus Ponens: 8.2, 5] } & \\
8 . & \neg P(a) \rightarrow R(a) & \text { [Direct Proof] } \\
9 . & \neg \neg P(a) \vee R(a) & \text { [Law of Implication: 8] } \\
10 . & P(a) \vee R(a) & \text { [Double Negation: 9] } \\
11 . & \exists x(P(x) \vee R(x)) & \text { [Intro ヨ: 10] }
\end{array}
$$

7. More Predicate Translation!

(a) Translate the following sentence into predicate logic:
"Every element in the array A appears at least twice"
Assume the length of the array is a positive even number n, and assume the domain of discourse is valid integer indexes of A, i.e. $\{0,1,2, \ldots, n-1\}$. You should use array notation to refer to an element of the array (i.e. $A[i]$ is the i -th element of the array A), and may use $=$. You should not use any other predicates you create yourself.

Solution:

$$
\forall i \exists j(i \neq j \wedge A[i]=A[j])
$$

(b) Now translate the following modified sentence into predicate logic:
"Every element in the array A appears exactly twice"
Hint: You should be able to use what you wrote for part (a), with some additions.

Solution:

The difference here is that we need to add an additional restriction so that any index that is not i or j does not have the same value as $A[i]$ and $A[j]$.

$$
\forall i \exists j(i \neq j \wedge A[i]=A[j] \wedge \forall k((k \neq i \wedge k \neq j) \rightarrow A[k] \neq A[i]))
$$

8. More Formal Proofs: Propositional Logic!

Use a formal proof to show that for any propositions a, b, c, the following holds.

$$
a \rightarrow(b \rightarrow(c \rightarrow((a \wedge b) \wedge c)))
$$

Solution:

Left as an exercise. General idea is to introduce several assumptions, followed by several intro \wedge steps, followed by several applications of the Direct Proof Rule.

