CSE 390Z: Mathematics for Computation Workshop

Week 3 Workshop Solutions

Name: _____

Collaborators: _____

Conceptual Review

(a) What are the inference rules?

Solution:

Introduce \lor :	$\frac{A}{\therefore A \lor B, B \lor A}$
Eliminate V:	$\frac{A \lor B \ ; \ \neg A}{\therefore B}$
Introduce \land :	$\frac{A ; B}{\therefore A \land B}$
Eliminate \land :	$\frac{A \wedge B}{\therefore A \ , \ B}$
Direct Proof:	$\frac{A \Rightarrow B}{\therefore A \to B}$
Modus Ponens:	$\frac{A \; ; \; A \to B}{\therefore \; B}$
Intro ∃:	$\frac{P(c) \text{ for some } c}{\therefore \exists x P(x)}$
Eliminate ∃:	$\frac{\exists x P(x)}{\therefore P(c) \text{ for a fresh } c}$
Intro \forall :	$\frac{P(a); \ a \text{ is arbitrary}}{\therefore \ \forall x P(x)}$
Eliminate \forall :	$\frac{\forall x P(x)}{\therefore P(a); \ a \text{ is arbitrary}}$

(b) Given $A \wedge B$, prove $A \vee B$

Given $P \to R$, $R \to S$, prove $P \to S.$

Solution:

- 1. $A \wedge B$ (Given) 2. A (Elim \wedge : 1.)
- 3. $A \lor B$ (Intro \lor : 2.)

- 1. $P \rightarrow R$ (Given)
- 2. $R \rightarrow S$ (Given)
 - 3.1 P (Assumption)
 - 3.2 R (Modus Ponens: 3.1, 1)
 - 3.3 *S* (Modus Ponens: 3.2, 2)
- 3. $P \rightarrow S$ (Direct Proof Rule; 3.1-3.3)

(c) How do you prove a "for all" statement? E.g. prove $\forall x P(x)$

Show that for any **arbitrary** a in the domain, P(a) holds.

(d) How do you prove a "there exists" statement? E.g. prove $\exists x P(x)$

Solution:

Show that for some specific a in the domain, P(a) holds.

1. Tricky Translations

Translate the following English sentences to predicate logic. The domain is integers, and you may use =, \neq , and > as predicates. Assume the predicates Prime, Composite, and Even have been defined appropriately.

(a) 2 is prime.

Solution:

 $\mathsf{Prime}(2)$

(b) Every positive integer is prime or composite, but not both.

Solution:

 $\begin{aligned} &\forall x \; ((x > 0) \to (\mathsf{Prime}(x) \oplus \mathsf{Composite}(x))) \\ &\mathsf{OR} \\ &\forall x \; ((x > 0) \to [(\mathsf{Prime}(x) \land \neg \mathsf{Composite}(x)) \lor (\neg \mathsf{Prime}(x) \land \mathsf{Composite}(x))]) \end{aligned}$

(c) There is exactly one even prime.

Solution:

$$\begin{split} &\exists x ((\mathsf{Even}(x) \land \mathsf{Prime}(x) \land \forall y [(\mathsf{Even}(y) \land \mathsf{Prime}(y)) \to (y = x)]) \\ &\mathsf{OR} \\ &\exists x ((\mathsf{Even}(x) \land \mathsf{Prime}(x) \land \forall y [(y \neq x) \to \neg(\mathsf{Even}(y) \land \mathsf{Prime}(y))]) \end{split}$$

(d) 2 is the only even prime.

Solution:

 $\forall x \ ((x=2) \leftrightarrow \mathsf{Prime}(x) \land \mathsf{Even}(x))$

2. Formal Proofs: Modus Ponens

(a) Prove that given $p \to q$, $\neg s \to \neg q$, and p, we can conclude s.

Solution:

1. $p \rightarrow q$	(Given)
2. $\neg s \rightarrow \neg q$	(Given)
3. <i>p</i>	(Given)
4. q	(Modus Ponens; 1,3)
5. $q \rightarrow s$	(Contrapositive; 2)
б. <i>s</i>	(Modus Ponens; 5,4)

(b) Prove that given $\neg(p \lor q) \rightarrow s$, $\neg p$, and $\neg s$, we can conclude q.

1. $\neg(p \lor q) \rightarrow s$ (Given)2. $\neg p$ (Given)3. $\neg s$ (Given)4. $\neg s \rightarrow \neg \neg(p \lor q)$ (Contrapositive; 1)5. $\neg s \rightarrow (p \lor q)$ (Double Negation; 4)6. $p \lor q$ (Modus Ponens; 3,5)7. q(Elim $\lor; 6,2)$

3. Formal Proofs: Direct Proof Rule

(a) Prove that given $p \to q$, we can conclude $(p \wedge r) \to q$

Solution:

1. $p \rightarrow q$	(Given)
2.1 $p \wedge r$	(Assumption)
2.2 p	(Elim ∧; 2.1)
2.3 q	(Modus Ponens; 2.2, 1.)
2. $(p \wedge r) \rightarrow q$	(Direct proof rule; 2.1-2.3)

(b) Prove that given $p \lor q$, $q \to r$, and $r \to s$, we can conclude $\neg p \to s$.

Solution:

1. $p \lor q$	(Given)
2. $q \rightarrow r$	(Given)
3. $r \rightarrow s$	(Given)
4.1 $\neg p$	(Assumption)
4.2 q	(Elim ∨; 1, 4.1)
4.3 <i>r</i>	(Modus Ponens; 4.2, 2)
4.4 <i>s</i>	(Modus Ponens; 4.3, 3)
4. $\neg p \rightarrow s$	(Direct proof rule; 4.1-4.4)

4. Predicate Logic Formal Proof

(a) Prove that $\forall x P(x) \rightarrow \exists x P(x)$. You may assume that the domain is nonempty.

Solution:

1.1. $\forall x P(x)$	(Assumption)
1.2. $P(a)$	(Elim ∀: 1.1)
1.3. $\exists x P(x)$	(Intro ∃: 1.2)
1. $\forall x P(x) \to \exists x P(x)$	(Direct Proof Rule, from 1.1-1.3)

(b) Given $\forall x(T(x) \to M(x))$ and $\exists x(T(x))$, prove that $\exists x(M(x))$.

1. $\forall x(T(x) \to M(x))$ (Given)2. $\exists x(T(x))$
Let r be the object that satisfies T(r)(Given)
(Given)3. T(r)
4. $T(r) \to M(r)$ (\exists elimination, from 2)
(\forall elimination, from 1)5. M(r)
6. $\exists x(M(x))$ (Modus ponens, from 3 and 4)
(\exists introduction, from 5)(c) Given $\forall x(P(x) \to Q(x))$, prove that $(\exists xP(x)) \to (\exists yQ(y))$.

Solution:

1. $\forall x(P(x) \to Q(x))$	(Given)
2.1. $\exists x(P(x))$ Let r be the object that satisfies $P(r)$	(Assumption)
2.2. $P(r)$	$(\exists$ elimination, from 2.1)
2.3. $P(r) \rightarrow Q(r)$	$(\forall \ elimination, \ from \ 1)$
2.4. $Q(r)$	(Modus Ponens, from 2.2 and 2.3)
2.5. $\exists y(Q(y))$	$(\exists introduction, from 2.4)$
2. $(\exists x P(x)) \to (\exists y Q(y))$	(Direct Proof Rule, from 2.1-2.5)

5. Predicate Logic Formal Proof: Oddly Even

Write a formal proof to show: If n, m are odd, then n + m is even. Let the predicates Odd(x) and Even(x) be defined as follows where the domain of discourse is integers:

$$\mathsf{Odd}(x) := \exists y \ (x = 2y + 1)$$

 $\mathsf{Even}(x) := \exists y \ (x = 2y)$

- 1. Let x be an arbitrary integer.
- 2. Let y be an arbitrary integer.

3.1.	$Odd(x)\wedgeOdd(y)$	[Assumption]	
3.2.	Odd(x)	[Elim ∧: 3.1]	
3.3.	$\exists k \; (x = 2k + 1)$	[Definition of Odd, 3.2]	
3.4.	x = 2k + 1	[Elim ∃: 3.3]	
3.5.	Odd(y)	[Elim ∧: 3.1]	
3.6.	$\exists k \; (y = 2k + 1)$	[Definition of Odd, 3.5]	
3.7.	y = 2j + 1	[Elim ∃: 3.7]	
3.8.	x + y = 2k + 1 + 2j + 1	[Algebra: 3.4, 3.7]	
3.9.	x+y = 2(k+j+1)	[Algebra: 3.8]	
3.10.	$\exists r \; (x+y=2r)$	[Intro ∃: 3.9]	
3.11.	Even(x+y)	[Definition of Even, 3.10]	
$Odd(x)\wedgeOdd$	$d(y) \to Even(x+y)$		[Direct Proof Rule]
$\forall m(Odd(x) \land$	$\wedge \operatorname{Odd}(m) \to \operatorname{Even}(x+m))$		[Intro ∀: 2,3]
$\forall n \forall m (Odd(n))$	$(n) \wedge Odd(m) \to Even(n+m)$	n))	[Intro ∀: 1,4]

6. More Formal Proofs: Predicate Logic!

Given $\forall x \ (P(x) \lor Q(x))$ and $\forall y \ (\neg Q(y) \lor R(y))$, prove $\exists x \ (P(x) \lor R(x))$. You may assume that the domain is not empty.

Solution:

3. 4. 5.

1.	$\forall x \; (P(x) \lor Q(x))$	[Given]
2.	$\forall y \; (\neg Q(y) \lor R(y))$	[Given]
3.	$P(a) \lor Q(a)$	[Elim ∀: 1]
4.	$ eg Q(a) \lor R(a)$	[Elim ∀: 2]
5.	$Q(a) \to R(a)$	[Law of Implication: 4]
6.	$\neg \neg P(a) \lor Q(a)$	[Double Negation: 3]
7.	$\neg P(a) \rightarrow Q(a)$	[Law of Implication: 5]
	8.1. $\neg P(a)$ [Assumption]	
	8.2. $Q(a)$ [Modus Ponens: 8.1, 7]	
	8.3. $R(a)$ [Modus Ponens: 8.2, 5]	
8.	$\neg P(a) \rightarrow R(a)$	[Direct Proof]
9.	$\neg \neg P(a) \lor R(a)$	[Law of Implication: 8]
10.	$P(a) \lor R(a)$	[Double Negation: 9]
11.	$\exists x \ (P(x) \lor R(x))$	[Intro ∃: 10]

7. More Predicate Translation!

(a) Translate the following sentence into predicate logic:

"Every element in the array A appears at least twice"

Assume the length of the array is a positive even number n, and assume the domain of discourse is valid integer indexes of A, i.e. $\{0, 1, 2, ..., n - 1\}$. You should use array notation to refer to an element of the array (i.e. A[i] is the i-th element of the array A), and may use =. You should not use any other predicates you create yourself.

Solution:

$$\forall i \exists j (i \neq j \land A[i] = A[j])$$

(b) Now translate the following modified sentence into predicate logic:

"Every element in the array A appears exactly twice"

Hint: You should be able to use what you wrote for part (a), with some additions.

Solution:

The difference here is that we need to add an additional restriction so that any index that is not i or j does not have the same value as A[i] and A[j].

$$\forall i \exists j (i \neq j \land A[i] = A[j] \land \forall k ((k \neq i \land k \neq j) \to A[k] \neq A[i]))$$

8. More Formal Proofs: Propositional Logic!

Use a formal proof to show that for any propositions a, b, c, the following holds.

$$a \to (b \to (c \to ((a \land b) \land c)))$$

Solution:

Left as an exercise. General idea is to introduce several assumptions, followed by several intro \land steps, followed by several applications of the Direct Proof Rule.