CSE 390Z: Mathematics for Computation Workshop

Practice 311 Final

Name: \qquad

UW ID: \qquad

Instructions:

- This is a simulated practice final. You will not be graded on your performance on this exam.
- This final was written to take 50 minutes. The real final will be an hour and 50 minutes.
- Nevertheless, please treat this as if it is a real exam. That means that you may not discuss with your neighbors, reference outside material, or use your devices during the next 50 minute period.
- If you get stuck on a problem, consider moving on and coming back later. In the actual exam, there will likely be opportunity for partial credit.
- There are 5 problems on this exam.

1. All the Machines! [15 points]

Let the alphabet be $\Sigma=\{a, b\}$. Consider the language $L=\left\{w \in \Sigma^{*}\right.$: every a has a b two characters later $\}$. In other words, L is the language of all strings in the alphabet a, b where after any a, the character after the a can be anything, but the character after that one must be a b.

Some strings in L include $\varepsilon, a b b, a a b b, b b b b a b b$. Some strings not in L include $a, a b, a a b, a b a b b$. Notice that the last two characters of the string cannot be an a.
(a) (5 points) Give a regular expression that represents L.
(b) (5 points) Give a CFG that represents L.
(c) (5 points) Give a DFA that represents L.
2. Induction 1 [20 points]

Recall the recursive definition of a list of integers:

- [] is the empty list
- If L is a list and a is an integer, then $a:: L$ is a list whose first element is a, followed by the elements of L.

Consider the following functions defined on lists:
len([]) $=0$
$\operatorname{len}(x:: L)=1+\operatorname{len}(L)$
$\operatorname{inc}([])=[]$
$\operatorname{inc}(x:: L)=(x+1):: \operatorname{inc}(L)$
$\operatorname{sum}([])=0$
$\operatorname{sum}(x:: L)=x+\operatorname{sum}(L)$

Prove that for all lists L, $\operatorname{sum}(\operatorname{inc}(L))=\operatorname{sum}(L)+\operatorname{len}(L)$.
3. Induction 2 [20 points]

Consider the following recursive definition of a_{n} :

$$
\begin{array}{ll}
a_{1}=1 \\
a_{2} & =1 \\
a_{n} & =\frac{1}{2}\left(a_{n-1}+\frac{2}{a_{n-2}}\right)
\end{array} \quad \text { for } n>2
$$

Prove that $1 \leq a_{n} \leq 2$ for all integers $n \geq 1$.
4. Modular Arithmetic [10 points]
(a) Prove or disprove: If $a \equiv b(\bmod 10)$, then $a \equiv b(\bmod 5)$. [5 points]
(b) Prove or disprove: If $a \equiv b(\bmod 10)$, then $a \equiv b(\bmod 20)$. [5 points]

5. Irregularity [20 points]

Prove that the set of strings $\left\{0^{n} 10^{n}: n \geq 0\right\}$ is not regular.

