CSE 390Z: Mathematics of Computing

Week 9 Workshop

Conceptual Review

Relations definitions: Let R be a relation on A. In other words, $R \subseteq A \times A$. Then:

- R is reflexive iff for all $a \in A,(a, a) \in R$.
- R is symmetric iff for all a, b, if $(a, b) \in R$, then $(b, a) \in R$.
- R is antisymmetric iff for all a, b, if $(a, b) \in R$ and $a \neq b$, then $(b, a) \notin R$.
- R is transitive iff for all a, b, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Let R, S be relations on A. Then:

- $R \circ S=\{(a, c): \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$

1. Relations Examples

(a) Suppose that R, S are relations on the integers, where $R=\{(1,2),(4,3),(5,5)\}$ and $S=\{(2,5),(2,7),(3,3)\}$. What is $R \circ S$? What is $S \circ R$?
(b) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. List 3 pairs of integers that are in R, and 3 pairs of integers that are not.
(c) Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \in R$ iff $a \leq b+1$. Determine if R is reflexive, symmetric, antisymmetric, and/or transitive. If a relation has a property, explain why. If not, state a counterexample.

2. Relations Proofs

Suppose that $R, S \subseteq \mathbb{Z} \times \mathbb{Z}$ are relations.
(a) Prove or disprove: If R and S are transitive, $R \cup S$ is transitive.
(b) Prove or disprove: If R and S are reflexive, then $R \circ S$ is reflexive.
(c) Prove or disprove: If $R \circ S$ is reflexive, then R and S are reflexive.
(d) Prove or disprove: If R is symmetric, \bar{R} (the complement of R) is symmetric.

3. Constructing DFAs

For each of the following, construct a DFA for the specified language.
(a) Strings with an even number of a 's $(\Sigma=\{a\})$.
(b) Strings with an even number of a 's or an odd number of b 's $(\Sigma=\{a, b\})$.
(c) Strings of a 's and b 's with odd length $(\Sigma=\{a, b\})$.

