CSE 390Z: Mathematics of Computing

Week 7 Workshop

Conceptual Review

Space to take notes on strong and structural induction:

1. Strong Induction: Collecting Candy

A store sells candy in packs of 4 and packs of 7 . Let $\mathrm{P}(n)$ be defined as "You are able to buy n packs of candy". For example, $P(3)$ is not true, because you cannot buy exactly 3 packs of candy from the store. However, it turns out that $\mathrm{P}(n)$ is true for any $n \geq 18$. Use strong induction on n to prove this.

Hint: you'll need multiple base cases for this - think about how many steps back you need to go for your inductive step.

2. Structural Induction: Dictionaries

Consider the following definition for a Dictionary (known in some languages as a Map):

- [] is the empty dictionary
- If D is a dictionary, and a and b are elements of the universe, then $(a \rightarrow b):: \mathrm{D}$ is a dictionary that maps a to b (in addition to the content of D).

Now, define the following programs on a dictionary:

$$
\begin{array}{llrr}
\text { AllKeys([]) } & =[] & \operatorname{len}([]) & =0 \\
\text { AllKeys }((a \rightarrow b):: \mathrm{D}) & =a:: \operatorname{AllK} \operatorname{Keys}(\mathrm{D}) & \operatorname{len}((a \rightarrow b):: \mathrm{D}) & =1+\operatorname{len}(\mathrm{D})
\end{array}
$$

Prove that len $(D)=\operatorname{len}(\operatorname{AllKeys}(D))$.

3. Strong Induction: Functions

Consider the function $f(n)$ defined for integers $n \geq 1$ as follows:
$f(1)=1$ for $n=1$
$f(2)=4$ for $n=2$
$f(3)=9$ for $n=3$
$f(n)=f(n-1)-f(n-2)+f(n-3)+2(2 n-3)$ for $n \geq 4$
Prove by strong induction that for all $n \geq 1, f(n)=n^{2}$.

4. Structural Induction: Lists

Consider the following recursive definition for a List:

- [] is the empty list
- If L is a list, and a is an element of the universe, then $a:: \mathrm{L}$ is a list that has the first element a followed by the elements in L.

For example, $2::[]$ is the list [2], and $1:: 2:: 3::[]$ is the list $[1,2,3]$. Define the following recursive functions:

$$
\begin{array}{llr}
\operatorname{all}(x, \mathrm{[}]) & =[], & \operatorname{all}(x, y:: \mathrm{L})=\text { if } x=y \text { then } y:: \operatorname{all}(x, \mathrm{~L}) \text { else all }(x, \mathrm{~L}) \\
\operatorname{removeAll}(x,[])=[], & \operatorname{removeAll}(x, y:: \mathrm{L})=\text { if } x=y \text { then } \operatorname{removeAll}(x, \mathrm{~L}) \text { else } y:: \operatorname{removeAll}(x, \mathrm{~L}) \\
\operatorname{len}([]) & =0, & \operatorname{len}(a:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})
\end{array}
$$

$\operatorname{Prove} \operatorname{len}(\operatorname{removeAll}(x, \mathrm{~L}))=\operatorname{len}(\mathrm{L})-\operatorname{len}(\operatorname{all}(x, \mathrm{~L}))$.

5. Strong Induction: Cards on the Table

I've come up with a new card game that is played between 2 players as follows. We start with some integer $n \geq 1$ cards on the table. The two players then take turns removing cards from the table; in a single turn, a player can choose to remove either 1 or 2 cards from the table. A player wins by taking the last card. For example:

The person I've been playing with has been very careful about dealing the cards, and keeps winning; I think they know something I don't about this game. I want to use induction to prove that if $3 \mid n$, the second player (P2) can guarantee a win, and if n is not divisible by 3, the first player (P1) can guarantee a win.
(a) How many base cases does this proof need? What should they be?
(b) Use strong induction to prove that if $3 \mid n$, P 2 can guarantee a win, and if n is not divisible by $3, \mathrm{P} 1$ can guarantee a win.

