CSE 390Z: Mathematics for Computation Workshop
Week 3 Workshop
Name: \qquad
Collaborators:

Conceptual Review

(a) What are the inference rules?
(b) Given $A \wedge B$, prove $A \vee B$

Given $P \rightarrow R, R \rightarrow S$, prove $P \rightarrow S$.
(c) How do you prove a "for all" statement? E.g. prove $\forall x P(x)$
(d) How do you prove a "there exists" statement? E.g. prove $\exists x P(x)$

1. Tricky Translations

Translate the following English sentences to predicate logic. The domain is integers, and you may use $=, \neq$, and $>$ as predicates. Assume the predicates Prime, Composite, and Even have been defined appropriately.
(a) 2 is prime.
(b) Every positive integer is prime or composite, but not both.
(c) There is exactly one even prime.
(d) 2 is the only even prime.

2. Formal Proofs: Modus Ponens

(a) Prove that given $p \rightarrow q, \neg s \rightarrow \neg q$, and p, we can conclude s.
(b) Prove that given $\neg(p \vee q) \rightarrow s$, $\neg p$, and $\neg s$, we can conclude q.

3. Formal Proofs: Direct Proof Rule

(a) Prove that given $p \rightarrow q$, we can conclude $(p \wedge r) \rightarrow q$
(b) Prove that given $p \vee q, q \rightarrow r$, and $r \rightarrow s$, we can conclude $\neg p \rightarrow s$.

4. Predicate Logic Formal Proof

(a) Prove that $\forall x P(x) \rightarrow \exists x P(x)$. You may assume that the domain is nonempty.
(b) Given $\forall x(T(x) \rightarrow M(x))$ and $\exists x(T(x))$, prove that $\exists x(M(x))$.
(c) Given $\forall x(P(x) \rightarrow Q(x))$, prove that $(\exists x P(x)) \rightarrow(\exists y Q(y))$.

5. Predicate Logic Formal Proof: Oddly Even

Write a formal proof to show: If n, m are odd, then $n+m$ is even.
Let the predicates $\operatorname{Odd}(x)$ and $\operatorname{Even}(x)$ be defined as follows where the domain of discourse is integers:

$$
\begin{gathered}
\operatorname{Odd}(x):=\exists y(x=2 y+1) \\
\operatorname{Even}(x):=\exists y(x=2 y)
\end{gathered}
$$

6. More Formal Proofs: Predicate Logic!

Given $\forall x(P(x) \vee Q(x))$ and $\forall y(\neg Q(y) \vee R(y))$, prove $\exists x(P(x) \vee R(x))$. You may assume that the domain is not empty.

7. More Predicate Translation!

(a) Translate the following sentence into predicate logic:
"Every element in the array A appears at least twice"
Assume the length of the array is a positive even number n, and assume the domain of discourse is valid integer indexes of A, i.e. $\{0,1,2, \ldots, n-1\}$. You should use array notation to refer to an element of the array (i.e. $A[i]$ is the i -th element of the array A), and may use $=$. You should not use any other predicates you create yourself.
(b) Now translate the following modified sentence into predicate logic:
"Every element in the array A appears exactly twice"
Hint: You should be able to use what you wrote for part (a), with some additions.

8. More Formal Proofs: Propositional Logic!

Use a formal proof to show that for any propositions a, b, c, the following holds.

$$
a \rightarrow(b \rightarrow(c \rightarrow((a \wedge b) \wedge c)))
$$

