CSE 390Z: Mathematics for Computation Workshop

QuickCheck: Set Theory Proof Solutions (due Sunday, November 6)

Please submit a response to the following questions on Gradescope. We do not grade on accuracy, so please submit your best attempt. You may either typeset your responses or hand-write them. Note that hand-written solutions must be legible to be graded.

We have created **this template** if you choose to typeset with Latex. **This guide** has specific information about scanning and uploading pdf files to Gradescope.

0. Set Proof: A Complement Makes all the Difference

Prove that for any sets A, B:

 $A \cap \overline{(A \setminus B)} = A \cap B$

Solution:

Let A and B be arbitrary sets. First we show $A \cap \overline{(A \setminus B)} \subseteq A \cap B$. Let x be an arbitrary element of $A \cap \overline{(A \setminus B)}$. By definition of \cap and complement, x is an element of A and is not an element of $(A \setminus B)$. By definition of set difference this means, $x \in A \land \neg (x \in A \land x \notin B)$. By DeMorgan's law we have: $x \in A \land (x \notin A \lor x \in B)$. Distributing we find, $(x \in A \land x \notin A) \lor (x \in A \land x \in B)$. By definition of empty set, union, and intersection we find: $(x \in A \land x \notin A) \lor (x \in A \land x \in B) = \emptyset \cup (A \cap B) = A \cap B$.

Therefore, since x was arbitrary we have found every element in $A \cap \overline{(A \setminus B)}$ is in $A \cap B$, so it follows that $A \cap \overline{(A \setminus B)} \subseteq A \cap B$.

Now we show $A \cap B \subseteq A \cap \overline{(A \setminus B)}$. Let x be an arbitrary element of $A \cap B$. Then, by definition of intersection, we know $(x \in A \land x \in B)$. By identity, we can state $(x \in A \land x \in B) \lor (x \in A \land x \notin A)$. By definition of distributivity we have, $x \in A \land (x \notin A \lor x \in B)$. Then by DeMorgan's law we have $x \in A \land \neg (x \in A \land x \notin B)$. Then by definition of intersection, complement, and set difference we have $A \cap \overline{(A \setminus B)}$. Therefore, since x was arbitrary we have found that every element in $A \cap B$ is in $A \cap \overline{(A \setminus B)}$, thus $A \cap B \subseteq A \cap \overline{(A \setminus B)}$.

Since we have shown subset equality in both directions, we have proven $A \cap \overline{(A \setminus B)} = A \cap B$.

1. Video Solution

Watch **this solution video** from our past instructor Omar **after** making an initial attempt. Then, answer the following questions.

- (a) What is one thing you took away from the video solution?
- (b) What topic from the quick check or lecture would you most like to review in workshop?