Week 5
CSE 390Z
November 1, 2022

Welcome in!

Grab your nametag and the workshop problems from the front

Announcements

New Late Policy posted on Ed

Can submit up to 2 days late (Tuesday at 11:59pm) on all assignments. No further extensions will be granted.

Previous Assignments

- Quick Check 4

Late Due: Today at 11:59 PM
Upcoming Assignments

- Quick Check 5

Due: Sunday November 6, 11:59 PM

- Homework Corrections 1 11:59 PM

Due: Sunday November 6,

Mid-Quarter Announcements

- Next workshop will be a full-length simulated midterm

Taking this simulated midterm and submitting it to Gradescope is required for CSE 390z course credit.

- Mid-Quarter Feedback

Please fill out the survey at this link regarding your 390z
experience thus far.
https://tinyurl.com/390zau22

Conceptual
Review

Set Definitions

Equality: $\mathrm{A}=\mathrm{B}$
$\forall x(x \in A \leftrightarrow x \in B)$

Subset: A؟B

$$
\forall x(x \in A \rightarrow x \in B)
$$

Set Definitions

Union: A $\mathbf{~ B}$

$\{\underline{x}: x \in A \vee x \in B\}$

Intersection: $A \cap B$

$\{\underline{x}: \underline{x \in A} \wedge x \in B\}$

Set Definitions

Set Difference: $A \backslash B$

$\{\underline{x}: x \in \underline{A} \wedge x \notin B\}$

Set Complement: A
$\{x: x \notin A\}$

Set Proofs
(b) How do we prove that for sets A and $B, A \subseteq B$?

Let $x \in A$ be arbitrary... show $x \in \mathcal{B}$. Thus, $A \subseteq B$
(c) How do we prove that for sets A and $B, A=B$?
"Meta Theorem"
(1) $A \subseteq B$ and $B \subseteq A$
(2) Chain of Equivalences
(d) What does $\{x \in \mathbb{Z}: x>0\}$ mean?
set of positive integers

$$
\begin{aligned}
x \in A & \equiv L \\
& \equiv L . \quad \\
& \equiv x \in B
\end{aligned}
$$

Set Proofs

(b) How do we prove that for sets A and $B, A \subseteq B$?

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.
(c) How do we prove that for sets A and $B, A=B$?

Method 1: Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$.
Method 2: Use a chain of logical equivalences.
(d) What does $\{x \in Z: x>0\}$ mean?

The set of all positive integers.

Example Problems

(a) Prove that $\frac{\stackrel{\gamma}{\nu}}{A \cap B \subseteq A \cup B}$

(a) Prove that $A \cap B \subseteq A \cup B$

Let $x \in A \cap B$ be arbitrary.
Then by definition of intersection, $x \in A$ and $x \in B$.
So certainly $x \in A$ or $x \in B$.
Then by definition of union, $x \in A \cup B$.
Since x was arbitrary, we have shown $A \cap B \subseteq A \cup B$
(b) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$
strategy (1)
Show
$A \cap(A \cup B) \subseteq A \cup(A \cap B)$
AND
show

$$
A \cup(A \cap B) \leq A \cap(A \cup B)
$$

strategy (2)
Let x be arbitrary.

$$
\begin{aligned}
x \in A \cap(A \cup B) & \equiv x \in A \wedge x \in A \cup B \\
& \equiv x \in A \wedge(x \in A \vee x \in B) \\
& \equiv(x \in A \wedge x \in A) \vee(x \in A \wedge x \in B) \\
& \equiv(x \in A) \vee(x \in A \wedge x \in B) \\
& \equiv x \in A \vee(x \in A \cap B)) \\
& \equiv x \in(A \cup(A \cap B))
\end{aligned}
$$

Thus $A \cap(A \cup B)=A \cup(A \cap B)$

(b) Prove that $A \cap(A \cup B)=A \cup(A \cap B)$

Let x be arbitrary. Observe that:

$$
\begin{array}{rlrl}
x \in A \cap(A \cup B) & \equiv(x \in A) \wedge(x \in A \cup B) & & \text { Def of Intersection } \\
& \equiv(x \in A) \wedge((x \in A) \vee(x \in B)) & & \text { Def of Union } \\
& \equiv((x \in A) \wedge(x \in A)) \vee((x \in A) \wedge(x \in B)) & \text { Distributivity } \\
& \equiv(x \in A) \vee((x \in A) \wedge(x \in B)) & & \text { Idempotency } \\
& \equiv(x \in A) \vee(x \in A \cap B) & & \text { Def of Intersection } \\
& \equiv x \in A \cup(A \cap B) & & \text { Def of Union }
\end{array}
$$

Since x was arbitrary, we have shown $A \cap(A \cup B)=A \cup(A \cap B)$.

Workshop Problems

