Week 5

CSE 390Z November 1, 2022

Welcome in!

Grab your nametag and the workshop problems from the front

Announcements

New Late Policy posted on Ed

Can submit up to 2 days late (Tuesday at 11:59pm) on all assignments. No further extensions will be granted.

Previous Assignments

• Quick Check 4

Upcoming Assignments

- Quick Check 5 11:59 PM
- Homework Corrections 1 11:59 PM

Late Due: Today at 11:59 PM

Due: Sunday November 6,

Due: Sunday November 6,

Mid-Quarter Announcements

• Next workshop will be a full-length simulated midterm

Taking this simulated midterm and submitting it to Gradescope is required for CSE 390z course credit.

• Mid-Quarter Feedback

Please fill out the survey at this link regarding your 390z experience thus far.

https://tinyurl.com/390zau22

Conceptual Review

Set Definitions

Equality: A = B

 $\forall x (x \in A \leftrightarrow x \in B)$

Subset: A⊆ B

Set Definitions

Set Difference: $\underline{A \setminus B}$

 $\{x: x \in A \land x \notin B\}$

Set Complement: A

 $\{x: x \notin A\}$

Set Definitions

Powerset: P(A)A $\{B: B \subseteq A\}$ P(A)

A has n $P(A) 2^n$

ξα3
 ξα3

Saibic3

(a,b)

 $\{(a, b) : a \in A, b \in B\}$

$$A = \{a, b, c\}$$

$$(1)$$

$$(a, b)$$

$$(c)$$

$$\{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a, b, c\}$$

1 2 3 R Α (x, 1)**(X**,2**)** (x,3)-A×B **(y**,1**) (y**,2**) (y**,3**)** y (**Z**,1) **(Z**,**2) (Z**,**3)** Ζ

Set Proofs

(b) How do we prove that for sets A and B, $A \subseteq B$? let XEA be arbitrary... show XEB. Thus, AEB (c) How do we prove that for sets A and B, A = B? inneta Theorem" (2) Chain of Equivalences (1) A S B and BSA (d) What does $\{x \in \mathbb{Z} : x > 0\}$ mean? XEA set of positive integers = XEB

Set Proofs

(b) How do we prove that for sets A and B, $A \subseteq B$?

Let $x \in A$ be arbitrary... thus $x \in B$. Since x was arbitrary, $A \subseteq B$.

(c) How do we prove that for sets A and B, A = B? Method 1: Use two subset proofs to show that $A \subseteq B$ and $B \subseteq A$. Method 2: Use a chain of logical equivalences.

(d) What does $\{x \in Z : x > 0\}$ mean?

The set of all positive integers.

Example Problems

(a) Prove that $\overrightarrow{A \cap B} \subseteq A \cup B$

Intuition	English	Formal
ANS ANS ANS ANS ANS S S S S S S S S S S	let XEANB be arb. Then XEA and XEB So certainly, XEA. Then XEA or XEB By defof Union, XEAUB. Since X arb., ANBSAUB	1. Let x be arbitrany 2.1 XEANB (Assumption) 2.2 XEA AXEB (bef n) 2.3 XEA (Elim A) 2.4 XEAVXEB (Intro V) 2.5 XEAUB (bef A) 8. XEANB YEAUB DPR 5. YX (XEANB > XEAUB) 4. ANB SAUB PEFS

(a) Prove that $A \cap B \subseteq A \cup B$

- Let $x \in A \cap B$ be arbitrary.
- Then by definition of intersection, $x \in A$ and $x \in B$.
- So certainly $x \in A$ or $x \in B$.
- Then by definition of union, $x \in A \cup B$.
- Since x was arbitrary, we have shown $A \cap B \subseteq A \cup B$

(b) Prove that $A \cap (A \cup B) = A \cup (A \cap B)$ strategy (2) strategy (1) let x be arbitrang. Show XGAN(AUB) = XEA A XEAUB AN(AUB) CAU(ANB) = XEA N (XEA V XEB) AND $= (X \in A \land X \in A) \lor (X \in A \land X \in B)$ (NON) $= (X \in A) \vee (X \in A \land X \in B)$ $A \cup (A \cap B) \subseteq A \cap (A \cup B)$ $= XEA \vee (XEANB))$ $\equiv \chi \epsilon (A \cup (A \cap B))$ Thus $A \cap (A \cup B) = A \cup (A \cap B)$

(b) Prove that $A \cap (A \cup B) = A \cup (A \cap B)$

Let x be arbitrary. Observe that:

 $x \in A \cap (A \cup B) \equiv (x \in A) \land (x \in A \cup B)$ Def of Intersection

 $\equiv (x \in A) \land ((x \in A) \lor (x \in B))$ Def of Union

 $\equiv ((x \in A) \land (x \in A)) \lor ((x \in A) \land (x \in B))$ Distributivity

 $\equiv (x \in A) \lor ((x \in A) \land (x \in B))$ Idempotency

 \equiv (x \in A) \lor (x \in A \cap B) Def of Intersection

 $\equiv x \in A \cup (A \cap B)$ Def of Union

Since x was arbitrary, we have shown $A \cap (A \cup B) = A \cup (A \cap B)$.

Workshop Problems