
CSE 390P: Problem Solving with Programming Winter 2018
Day 2: Symbolic Algebra
We begin by completely switching languages. Although SICP uses Scheme the whole way through, we will
explore different languages as we make our way through the book. For Day 2, we’ll use Javascript. In particular,
we’ll use node.js, but we will not use any of its libraries.
Today, you will create your own (simple) version of wolfram alpha.

Getting Familiar With Javascript
(a) In Javascript, we use the define procedure to define a variable and the print procedure to print strings.

var hello = "hello world";
process.stdout.write("We want to print " + hello);

> We want to print hello world

(b) We define procedures in a very similar way:
function print_greeting(greeting) {

return process.stdout.write(greeting + " World");
}
print_greeting("Hello")
print_greeting("Ahoy")

> Hello World
> Ahoy World

Diving In
One of the things we’ll explore in this course is modifying existing code rather than working from scratch. This
can sometimes be more difficult, but it’s a common scenario. In particular, we’ve started a symbolic algebra
library for you, and you will be implementing missing features. Download the file from the course website, ssh
to attu, and start trying reading through the code on attu! (These instructions are deliberately vague and
useless. If nobody in your group is familiar with UNIX, you should call me over for help.)

Parsing Mathematical Expressions & The Shunting Yard Algorithm
Last time we saw prefix notation–this time, we will end up using postfix notation which is slightly more
complicated. However, it has the advantage of being unambiguous without needing any parentheses which is
very helpful. We’ve handled all the details of postfix notation for you, but if you’re curious about more details,
stop here and look it up on Wikipedia.

(a) Reading 1.1
Read the shunting_yard code and make sure you understand it before moving on.

(b) Task 1.2
In this task, you will modify the shunting_yard algorithm to deal with unary negation (for example, the
expression −x− y uses unary negation on x and binary subtraction on −x and y.
Modifying the shunting_yard code involves two sub-parts:

(1) First, you will need to determine for each − sign you see if it is subtraction or unary negation. To
do this, consider the previous token (operator, parenthesis, number, or variable). In the cases where
(1) there is no previous token, (2) the previous token is an operator, or (3) the previous token is a
left parenthesis, then it is necessarily a unary minus. In all other cases, it should be interpreted as
binary subtraction. You will need to distinguish between these two in your output; so, you should
use a separate symbol (we used !) for unary negation.
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(2) Second, you will need to create a new “type” of output. Take a look at the post-processing step
where the code interprets the postfix expression. You will need to add a case there for a type ‘unary
operation’ with op ‘!’.

Checking Equality of Expressions
In a computer algebra system, the user often wants to know if two expressions, e1 and e2 are equal. This is a
non-trivial problem that gets very complicated, but the general idea is to take e1 − e2 and simplify it as much
as possible. Then, if it’s zero, we say they’re equal; if not, we say “probably not equal”. So, equality boils down
to a good simplification function.
There are lots of parts to simplification of algebraic expressions, but some of them are pretty straightforward. In
particular, if you take simple mathematical identities like x ∗ 0 = 0 and x ∗ x = x2 and apply as many identities
as possible, it gets you pretty far. We’ve given you the identities. . . but not code that checks if they apply.

(a) Task 2.1
The heart of our algorithm is in what we call a “transformation”. A “transformation” is a general identity
written out and parsed in our own algebraic system. This allows us to compare structures of the expressions
to see which identities apply. We’ve outlined the algorithm for you in the make_transformation function.
First, we convert the provided pieces of the identity into expressions. Then, we check if expr “matches”
the pattern. Finally, if it does match the pattern, we make a substitution.
We take the convention that a, b, c, and d stand for numbers, and w, x, y, and z stand for arbitrary
expressions. For each case of the matching algorithm, you should check if the pattern recursively matches
expr. Keep in mind that your variable assignments should not conflict. To test equality of expressions,
you will find the exactly_equal function useful (which we have written for you).
For the second part, where you actually replace the values, use the modified map from the previous part
to recursively substitute variables in the OUTPUT pattern with their assignments.

(b) Task 2.2
Now that you have a transformation maker, it’s time to update our code to handle unary expressions.

(c) Task 2.3
To simplify polynomials, we will need to group like-terms. Unfortunately, our expressions are all binary
and unary rather than n-ary. To deal with this, we introduce two new types of expression nodes: + and
∗ which are general addition and multiplication, respectively. Then, we recursively collect the addition
expressions and the multiplication expressions. In essence, a polynomial is just a bunch of additions of
multiplications/negations. Read and understand collect_op before continuing.
Now that we’ve collected together each term, we need to identify them individually. For example, we
might have 2xyx+2y+3xxy+5y+3yx2 = 8x2y+7y. To identify all three of these terms as the same,
we first need to “canonicalize” them. We do this by calling constant_fold on each product individually.
This gives us 2x2y+2y+3x2y+5y+3yx2. Next, we “sort” the string representation of each part of each
expression to order the product terms correctly. This gives us: 2x2y + 2y + 3x2y + 5y + 3x2y. Finally,
we “sort” the terms of the sum; so, “like terms” are close together–which will then get simplified by our
transformations which gives 8x2y + 7y as expected. When sorting, you will want to make use of the
localeCompare function as well as the regular expression “^/-?\(*[0-9]*([^)]*)\)*$/”. As if this
weren’t complicated enough, there’s a “gotcha” with how unary expressions interact with this algorithm.
You will need to add an extra case. Try looking at the test outputs to see what is missing.

Simplifying Rational Polynomials
We’re still not done simplifying! We do not do a good job of handling rational functions (polynomials divided
by other polynomials). Look up and implement the synthetic division algorithm.
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