
CSE 390P: Problem Solving with Programming Winter 2018
Day 1: Getting Familiar With Scheme
We will be using the site http://repl.it to run Scheme code. You and your team should use a single
computer and work together.

Getting Familiar With Scheme
(a) Scheme uses prefix notation instead of the standard infix notation. For example, to call a procedure foo

with arguments argh1 and argh1, we would write (foo argh1 argh2) instead of the more standard
foo(argh1, argh2).

(b) In Scheme, we use the define procedure to define a variable and the print procedure to print strings.
(define hello "hello world")
(print "We want to print " hello)

> We want to print hello world

Notice the lack of commas between arguments to print.

(c) We define procedures in a very similar way:
(define (print-greeting greeting)

(print greeting " World")
)
(print-greeting "Hello")
(print-greeting "Ahoy")

> Hello World
> Ahoy World

(d) In Scheme, the last value in order will be automatically returned. For example, here is a modification of
the previous procedure to return the greeting instead of printing it, we simply remove the print:
(define (make-greeting greeting)

(string-append greeting " World" "!")
)
(make-greeting "Hello")
(make-greeting "Ahoy")

=> "Ahoy World!"

(e) Task 1.1
Define a scheme procedure prefix-to-infix which takes in arguments op arg1 and arg2 in prefix
notation and returns a String representing the infix notation of the arguments. Make sure your result has
spaces. For example:
(print (prefix-to-infix "+" 1 2))
(print (prefix-to-infix "-" 3 4))

> 1 + 2
> 3 - 4

Hint: To convert a number to a string, use the procedure number->string.

1

http://repl.it


(f) Reading 1.2
Read section 1.1.6 of SICP which can be found at the URL: http://mitpress.mit.edu/sicp/full-text/
book/book-Z-H-10.html#%_sec_1.1.6.

Lists, Recursion, and Interviews
(a) In Scheme, the primary data structure used to work with data is the linked list. The following are examples

of manipulations of linked lists:
; constructor
(define mylist (list 1 2 3))

; get the first element in the list
(print (car mylist))

; get the "rest" of the list
(print (cdr mylist))

; get the length of the list
(print (length mylist) ", " (length (cdr mylist)))

; add an element to the front of a list
(print (cons 0 mylist))

> 1
> (2 3)
> 3, 2
> (0 1 2 3)

(b) You may have noticed that print, cond, +, and string-append all take an arbitrary number of argu-
ments. In Scheme, the way to specify an unknown number of arguments is to use “.”. The argument after
the “.” will be a list that contains all the remaining arguments. For example:
(define (delimit-arguments delim . rest)

(cond
((= 0 (length rest)) ())
((= 1 (length rest)) (list (car rest)))
(else (cons

(car rest)
(cons delim
(apply delimit-arguments (cons delim (cdr rest))))

))
)

)
(print (delimit-arguments "hi" 1 2 3))

> (1 hi 2 hi 3)

N.B. (apply fun args) is a procedure that calls fun using the elements of args as the arguments to
fun. I strongly recommend that you play around with this procedure before moving on.

(c) Task 2.1 Write a procedure prefix-to-infix-2 which generalizes prefix-to-infix to any number
of arguments.
(print (prefix-to-infix-2 "+" 1 2 3 4 5))
(print (prefix-to-infix-2 "-" 3 4))

2

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.6
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.6


> 1 + 2 + 3 + 4 + 5
> 3 - 4

(d) Task 2.2 Write a procedure count-change which returns the number of ways to make change for the
first argument using the rest of the arguments as denominations.
(print (count-change 3 1 2 3))
(print (count-change 30 1))
(print (count-change 30 4))

> 3
> 1
> 0

(e) Task 2.3 Write a procedure pascal which returns the nth row of pascal’s triangle, where 1 is the 0th
row, (1 1) is the 1st row, etc.
(print (pascal 0))
(print (pascal 1))
(print (pascal 2))
(print (pascal 3))
(print (pascal 4))
(print (pascal 5))
(print (pascal 10))

> (1)
> (1 1)
> (1 2 1)
> (1 3 3 1)
> (1 4 6 4 1)
> (1 5 10 10 5 1)
> (1 10 45 120 210 252 210 120 45 10 1)

Number Theory
(a) Reading 3.1

Read sections 1.2.4 and 1.2.5 of SICP which can be found at the URL: http://mitpress.mit.edu/
sicp/full-text/book/book-Z-H-10.html#%_sec_1.2.4.

(b) Task 3.2
Implement the Miller-Rabin Primality Test in Scheme: https://en.wikipedia.org/wiki/Miller%E2%
80%93Rabin_primality_test.

3

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.2.4
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.2.4
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test

