
Modular Arithmetic and
RSA Encryption

Stuart Reges
Principal Lecturer

University of Washington

Some basic terminology
! Alice wants to send a secret message to Bob
! Eve is eavesdropping
! Cryptographers tell Alice and Bob how to

encode their messages
! Cryptanalysts help Eve to break the code
! Historic battle between the cryptographers

and the cryptanalysts that continues today

Public Key Encryption
! Proposed by Diffie, Hellman, Merkle
! First big idea: use a function that cannot be

reversed (a humpty dumpty function): Bob
tells Alice a function to apply using a public
key, and Eve can’t compute the inverse

! Second big idea: use asymmetric keys
(sender and receiver use different keys): Bob
has a private key to compute the inverse

! Primary benefit: doesn't require the sharing of
a secret key

RSA Encryption
! Named for Ron Rivest, Adi Shamir, and

Leonard Adleman
! Invented in 1977, still the premier approach
! Based on Fermat's Little Theorem:

ap-1º1 (mod p) for prime p, gcd(a, p) = 1
! Slight variation:

a(p-1)(q-1)º1 (mod pq) for distinct primes p
and q, gcd(a,pq) = 1

! Requires large primes (100+ digit primes)

Example of RSA
! Pick two primes p and q, compute n = p´q
! Pick two numbers e and d, such that:

e´d = (p-1)(q-1)k + 1 (for some k)
! Publish n and e (public key), encode with:

(original message)e mod n
! Keep d, p and q secret (private key), decode

with:
(encoded message)d mod n

Why does it work?
! Original message is carried to the e power,

then to the d power:
(msge)d = msge x d

! Remember how we picked e and d:
msged = msg(p-1)(q-1)k + 1

! Apply some simple algebra:
msged = (msg(p-1)(q-1))k ´ msg1

! Applying Fermat's Little Theorem:
msged = (1)k ´ msg1 = msg

