Rule of Inference	Tautology	Name
$p \atop p \to q \atop \therefore q$	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
$ \frac{q}{p \wedge q} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline q \lor r \end{array} $	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

This is an argument that uses the addition rule.

EXAMPLE 4 State which rule of inference is the basis of the following argument: "It is below freezing and raining now. Therefore, it is below freezing now."

Solution: Let p be the proposition "It is below freezing now," and let q be the proposition "It is raining now." This argument is of the form

$$\therefore \frac{p \wedge q}{p}$$

This argument uses the simplification rule.

EXAMPLE 5 State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a barbecue tomorrow.